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1 Work Done

This section will present the work I have done in addition to the results presented in the midterm
report.

1.1 Updated pcl::surface Architecture

We have updated the pcl::surface architecture again (since the TOCS midterm report) for more in-
creased flexibility. The new structure is presented below.

CloudSurfaceProcessing (new class) - base class for algorithms that take a point cloud as an input
and produce a new output cloud that has been modified towards a better surface representation.
These types of algorithms include surface smoothing, hole filling, cloud upsampling etc. Currently,
the classes inheriting from this are:

• MovingLeastSquares

• BilateralUpsampling

MeshConstruction - reconstruction algorithms that always preserve the original input point cloud
data and simply construct the mesh on top (i.e. vertex connectivity). They input a point cloud
and produce a PolygonMesh that has the same vertices as the input. The current classes in PCL
that inherit from this are:

• ConcaveHull

• ConvexHull

• OrganizedFastMesh

• GreedyProjectionTriangulation

SurfaceReconstruction - reconstruction methods that generate a new surface or create new vertices
in locations different than the input point cloud. The input is a point cloud, and the output a
PolygonMesh with a different underlying vertex set. Classes in PCL that accord to this are:

• GridProjection

• MarchingCubes

• SurfelSmoothing

MeshProcessing - methods that modify an already existent mesh structure and output a new mesh.
They take in a PolygonMesh and produce a new PolygonMesh with possibly different vertices and
different connectivity. Classes currently inheriting from this are:

• EarClipping

• MeshSmoothingLaplacianVTK

• MeshSmoothingWindowedSincVTK

• MeshSubdivisionVTK
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Figure 1: Examples of all the upsampling methods present in the Moving Least Squares implementation
in PCL.

1.2 Moving Least Squares - Upsampling Methods

1.2.1 Introduction

In the Toyota Code Sprint midterm report, we presented the smoothing effects of the Moving Least
Squares algorithm we currently had in PCL, as proposed in the original paper by Alexa et al [1], and
extended in Rusu and colleagues in [10]. A thorough set of results can be found in the afore mentioned
document.

During this development period, we enhanced the approach to also handle hole filling. By definition,
the algorithm fits a polynomial of a certain degree (usually 2nd or 3rd degree) to the point set, so the
possibility of sampling these local polynomials comes naturally. We propose three methods of doing so,
as they will be explained in the next subsections. Figure 1 shows an overview of the effects of each
method.

1.2.2 NONE

No additional points are created in this case. This is just the Moving Least Squares point cloud
smoothing, the output will contain the same number of points as the input, possibly moved to better
approximate the underlying smooth surface.

1.2.3 SAMPLE LOCAL PLANE

For each point, its local plane is sampled by creating points inside a circle with fixed radius and fixed
step size. Then, using the polynomial that was fitted to the input cloud, compute the normal at the
sample position and add the displacement along the normal. To reject noisy points, we increased the
threshold for the number of points we need in order to estimate the local polynomial fit. This guarantees
that points with a weak neighborhood (i.e., noise) do not appear in the output.

Figure 2 shows the reconstruction of coke bottles on a table. Please notice the correction for the
quantization effects. The table surface is now planar and the objects look gripable. Figure 3 is a similar
scenario, now using tupperware. The contour of the tupperware is much smoother and contains a lot
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Figure 2: Moving Least Squares with SAMPLE LOCAL PLANE upsampling on a point cloud repre-
senting a table with bottles on top. On the right, the raw input cloud, and on the left, the processed
version.

Figure 3: Moving Least Squares with SAMPLE LOCAL PLANE upsampling on a point cloud repre-
senting a table with tupperware on top. On the right, the raw input cloud, and on the left, the processed
version.

more information. Lastly, Figure 4 shows how well the door handle is reconstructed. We conclude that
visually, the results are very good.

An immediate problem is that this method adds the same amount of new samples to all points,
not taking into account the local point density (i.e., points closer to the sensor will have much denser
neighborhoods in the input cloud, and this will be increased even more in the output; the opposite applies
for points further away from the sensor). An improvement we can make on this approach is to filter it
with a voxel grid in order to have a uniform point density.

1.2.4 UNIFORM DENSITY

This method takes as parameters a desired point density within a fixed-radius neighborhood. For
each point, based on the density of its vicinity, add more points on the local plane using a random
number generator with uniform distribution until the specified density is reached. We then apply the
same procedure as for SAMPLE LOCAL PLANE to project the new samples to the MLS surface.

The results are satisfying. As compared to the previous method, we do not need to apply the
expensive voxel grid filter anymore in order to get an uniformly sampled point cloud. An issue might
be the fact that, because we generate the points using a random number generator, the output point
cloud looks a bit messy (as compared to SAMPLE LOCAL PLANE, where the points are generated on
a grid determined by the step size), but the surface is still well preserved. We need to note that the time
performance is a slightly poorer due to the random number generator. Figure 5 shows an example on a
point cloud of some curtains.
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Figure 4: Moving Least Squares with SAMPLE LOCAL PLANE upsampling on a point cloud repre-
senting a close-up of a door handle. On the right, the raw input cloud, and on the left, the processed
version.

Figure 5: Moving Least Squares with UNIFORM DENSITY upsampling on a point cloud representing
curtains. On the right, the raw input cloud, and on the left, the processed version.

1.2.5 VOXEL GRID DILATION

The input cloud is inserted into a voxel grid which will be dilated a user-set number of times. The
resulting points will be projected to the MLS surface of the closest point in the input cloud. The output
is a point cloud with constant point density, and holes of various sizes are uniformly filled, based on the
size of the voxel grid and the number of dilation iterations we apply. Figure 6 shows an example.

1.2.6 A Fourth Method

At the suggestions of one of the authors of paper [10], we tried the following idea, but did not succeed
to make it feasibly memory efficient to handle large point clouds. Because of this reason, we did not
spend a lot of time on it and did not include it in the repository.

The idea behind it is to take each point pair within a fixed radius neighborhood and to uniformly
sample the line connecting these two points. Ideally, this would fill up any small holes inside the cloud.
The downside is that it also creates a lot of additional points in already dense areas. A solution would
have been to discretize the locations of the sampled points, but the previous methods gave us fairly good
results, so we abandoned this direction.

1.2.7 Quantitative Analysis of the results

The project requirements generally stated that the results should be inspected visually, and the quality
of the algorithms will mostly be assessed this way.

Table 1 shows the timing results of the MLS upsampling methods we implemented, all ran on a
Microsoft Kinect scan (about 300.000 points). We tweaked the parameters such that the running time
would be around 35 seconds, so that to evaluate the algorithms by the number of points they produce
in the same time interval.
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Figure 6: Moving Least Squares with VOXEL GRID DILATION upsampling on a point cloud. On the
right, the raw input cloud, and on the left, the processed version.

Upsampling method Time [sec] Resulting number of points
NONE 35 256.408

SAMPLE LOCAL PLANE 36 2.051.264
RANDOM UNIFORM DENSITY 36 740.510

VOXEL GRID DILATION 38 1.225.989

Table 1: Performance results of the various upsampling methods for MovingLeastSquares, ran on a
300.000 points Kinect cloud.

We devised a simple method for interpreting how well our upsampled clouds represent the scanned
surface. In order to do so, we scanned a wall at a distance where the noise is large (about 3m) and tried
to fit a plane in each of the resulting upsampled clouds. In order to make the experiment more realistic,
we took the picture of the wall at an angle, such that the quantization effects would increase along the
wall. The numeric results are presented in Table 2.

Unfortunately these numerical values do not represent the actual quality of the fit, because of the
varying point density across the cloud in the different upsampling methods (i.e., the parts of the wall
closer to the sensor had a larger density and precision in the original cloud, and as points get farther
from the sensor, the sparsity and noise increase; however, in VOXEL GRID DILATION and RAN-
DOM UNIFORM DENSITY, the density is constant across the cloud, meaning that the noisier part of
the wall has the same amount of points as the more precise part).

As such, in order to analyze the quality of the fit, we did a visual analysis of the inliers/outliers ratio,
as shown in Figure 7. The conclusion is that our upsampling methods do improve the plane fitting, and
that VOXEL GRID DILATION performs best.

1.3 Bilateral Filtering

The BilateralUpsampling implementation we did in PCL during this code sprint was inspired by [8].
The approach is to use the information in the RGB image (uniformly colored regions and sharp gradients)
in order to enhance the depth image, in a joint bilateral filtering, based on the following formula:

S̃p =
1

kp

∑
qd∈Ω

Sqdf(||pd − qd||g(||Ĩp − Ĩq||)

where S is the depth image and I the RGB image.
The Microsoft Kinect sensor is usually used in its native mode: 640x480 RGB image, 640x480 depth

image at a rate of 30 Hz. There is, however, another mode, which is useful for applying the bilateral
filtering algorithm: 1280x1024 RGB image, 640x480 depth image at 15 Hz. The quality of the color
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Upsampling method Number of points Percentage of inliers
original 275.140 81.3
NONE 275.140 81.1

SAMPLE LOCAL PLANE 2.201.120 81.2
RANDOM UNIFORM DENSITY 732.186 73

VOXEL GRID DILATION 1.050.394 73

Table 2: Results of plane fitting a scan of a wall, after being upsampled with MLS.

image is much higher. We implemented a new feature in the OpenNIGrabber (the PCL interface for the
OpenNI drivers) that publishes 1280x1024 point clouds at 15 Hz, with the inherent characteristics of
having each second row and column of points with nan depth values, and the last 64 rows are all nans
for the depth.

We then apply bilateral filtering, in order to fill those empty rows and columns. The results we
are expecting are point clouds of double the resolution in both directions (i.e., 4 times more points),
smoother surfaces and filling for small holes (based on the number of iterations of the algorithm).

Figures 8, 9, and 10 show examples we ran. Please note that the algorithm did not improve the
points corresponding to the glasses in Figure 8, as there was almost no depth information recorded by
the sensor for the algorithm to start from. However, in the case of the bottle, we did not get a lot of
points because the color difference between the label and cap on the bottle and the rest of the bottle is
very large (bilateral filtering considers that only points with small color differences should belong to the
same depth). Figure 10 shows the smoothing effect of the algorithm. The top image was filtered with
a small σcolor, and the bottom image used a large value for this parameter, obtaining a much smoother
wall surface.

1.4 Poisson Surface Reconstruction

The method proposed by Kazhdan in [7] poses surface reconstruction as a spatial Poisson problem,
that solves for all the points at once, and allows for a hierarchy of locally supported basis functions,
that reduces to a well conditioned sparse linear system. This approach is ubiquitous in the computer
graphics community, being considered one of the most reliable solutions for the surface reconstruction
problem. As the implementation of this method is very involved, we decided to port the code written by
the author. We struggled with a few issues in adapting the code, but in the end we got it fully working
within the pcl::surface module. We have created an interface for the algorithm that allows the user
to set all the parameters of the initial cloud, and the running performance is similar to the individual
application offered by the author on his website.

Unfortunately, this method cannot use raw Kinect scans to produce mesh representations, because
it is targeted at producing watertight meshes. We need registered clouds for this, and Figure 11 shows
such an example.

2 Future Work

There are a lot of things to be explored in the field of surface reconstruction, as the pcl::surface module
did not receive too much attention before this code sprint. I am currently working in the Computer
Graphics and Geometry Laboratory at EPFL under the supervision of Prof. Dr. Mark Pauly, one of the
authors of PointShop3D [9]. This application is a collection of interactive surface editing tools that might
contain algorithms of interest for the PCL community, and is definitely worth having a more thorough
look into.

During the code sprint, we analyzed the surface reconstruction methods adopted by MeshLab [4], and
concluded that they could not be applied to individual scans (as was the case with the Poisson surface
reconstruction), but gave good results on registered clouds. As such, we are suggesting to implement
algorithms such as Ball Pivoting [2], a flavor of Alpha Shapes [6] or [5], Radial Basis Functions surface
reconstruction [3] etc.
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(a) Original

(b) NONE

(c) RANDOM UNIFORM DENSITY

(d) VOXEL GRID DILATION

(e) SAMPLE LOCAL PLANE

Figure 7: Plane fitting on a wall after being smoothed and upsampled using the methods present in the
Moving Least Squares implementation. On the left, there is the smoothed and upsampled cloud for each
case and on the right, the plane inliers of that cloud.
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(a)

(b)

Figure 8: Bilateral Filtering results on a scan of glasses and a bottle.
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(a)

(b)

Figure 9: Bilateral Filtering results on a scan of two computer screens.
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(a)

(b)

Figure 10: Bilateral Filtering results on a scan of wall, with a low value for the σcolor parameter, and a
large value, respectively.
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Figure 11: On the left, a registered point cloud of a face and on the right, the Poisson surface recon-
struction.

12


