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Abstract— In this paper, we give an overview of the Jacobs Robotics
entry to the ICRA’11 Solutions in Perception Challenge. We present our
multi-pronged strategy for object recognition and localization based on
the integrated geometric and visual information available from the
Kinect sensor. Firstly, the range image is over-segmented using an
edge-detection algorithm and regions of interest are extracted based
on a simple shape-analysis per segment. Then, these selected regions
of the scene are matched with known objects using visual features and
their distribution in 3D space. Finally, generated hypotheses about the
positions of the objects are tested by back-projecting learned 3D models
to the scene using estimated transformations and sensor model. Our
method won the second place among eight competing algorithms, only
marginally losing to the winner.

I. Introduction

This paper gives an overview of the approach used by the Jacobs
Robotics team in the ICRA 2011 Solutions in Perception Challenge.
Object recognition has been long studied in general and it recently
found quite some attention with respect to the use of combined
RGB and depth information - especially in form of Kinect data [1],
[2], [3], [4], [5]. Due to space limitations, we focus in this paper on
the technical description of our methods and an in-depth discussion
of the general state of the art is omitted; the literature references
are hence limited to a minimum to point to the work on which we
build upon and to indicate where we extend it.

The paper is organized in the following way. Firstly, we introduce
our notation, used throughout the paper, in Sec. I-A. Then an
overview of the object recognition system is given in Sec. II.
The subsequent sections have detailed description of each of the
introduced components and the underlying algorithms. The exper-
imental setup and comprehensive benchmarking on two data-sets
from ICRA 2011 Solutions in Perception Challenge is provided in
Sec. VII. Finally, concluding remarks are presented in section Sec.
VIII.

A. Notation

The notation used in this paper is summarized in Table I. In
general, scalars are in normal lowercase letters, vectors in bold
small letters, and matrices in bold capitals. For quantities resolved
in di↵erent frames, we use the left superscript/subscript notation of
[6]. Right subscripts are used for indexing or for denoting vector
components.

Using this notation, the position vectors of the same physical
point observed from two di↵erent frames Fi and F j with their
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TABLE I
Notation

pi 2 R3 Position vector of a spatial point resolved in the reference
frame Fi.

pi 2 R4 The homogeneous coordinates for pi .
Mi Original image taken from camera-frame Fi.

mi 2 R2 Image pixel coordinates of a point in an image taken from
the camera-frame Fi.

mi 2 R3 The homogeneous coordinates for mi .
ci 2 R2 Normalized camera coordinates of a point in an image

taken from camera-frame Fi.
ci 2 R3 The homogeneous coordinates for ci .

origins at Oi and O j respectively, are related by

pi = Tij pj , where, (1a)

Tij ,
"

Rij tij
0T

3 1

#

, tij ,
���!OiO j resolved in Fi. (1b)

Using ' to show equality up to a positive scale-factor and the
camera intrinsic parameter [7] matrix C, the camera model is given
by

ci , C�1 mi , ci ' pi , (2a)

mi
(1)' C
h

Rij tij
i

pj , ci ' Rij pj + tij , (2b)

II. Design of the Recognition System
The workflow of the recognition system for detecting and local-

izing objects from a single view-point is depicted in Fig. 1. The
recognition is done by combining texture information obtained from
a color-image with geometric properties of the scene observed in
a depth-image. For that, object database of point-cloud based 3D
models with visual and shape cues is created during the training
phase (Sec. III). These models are then used to generate hypotheses
about the objects in the observed environment. This is done in the
following way.

Segmentation. Firstly, the geometric properties of sensor data are
examined by dividing range-image into regions of smooth surface
patches. This is achieved by the algorithm described in Sec. IV. A
very important aspect of our approach is the over-segmentation of
the scene. In other words, there is no commonly used assumption
that a segment must represent the whole object, which usually limits
recognition to environments with well-separated objects on an easily
detectable support surface, such as a table-top. On the contrary,
finding smooth sub-segments of the objects is a plausible task even
in cluttered scenes.

Regions of Interest. As described in Sec. IV-A the segmentation
result can be used to filter out large parts of the sensor data. Shape
properties of a patch can be compared against those of the learned
models to check if the segment could possibly be a part of any ob-
ject from the database. E↵ectively, large planar surfaces (e.g. walls,
floor, table-tops etc.) or other geometrically inconsistent segments
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Fig. 1. Object recognition and localization in a single RGB-D frame

are removed and not considered in the recognition process. The
detection of regions of interest significantly reduces search space for
recognition and localization algorithm, but is completely optional.

Feature Extraction and Matching. After the preprocessing step,
we combine the regions of interest into a global mask and use it
for extraction of texture features (e.g. Speeded Up Robust Features
(SURF) [8], [9], the Scale Invariant Feature Transform (SIFT) [10],
etc.). As explained in Sec. V each feature descriptor vector is
associated with a 3D pose with respect to the range sensor. Then,
the hypothesis about the best position in the scene is generated for
each object using random sample consensus (RANSAC) [11] based
feature-matching with 3D geometric constraints (Algorithm 2).

Testing Hypotheses. The transforms computed by the matching
algorithm are used to re-project the models of the objects. Color and
range consistency tests (Sec. VI) are then used to filter out false-
positives. Objects with high consistency scores are considered to be
recognized and their corresponding regions of interest are removed
from the scene. Detection is then re-iterated on the remaining
segments to handle multiple instances of the same object.

III. 3D Models of Real-World Objects
This section describes the model used by the recognition system

to represent real-world ojects.
We use a set of 3D points sampled from the object’s surface

paired with the colors at their locations to model the shape and
appearance of the real-world instance:

P , P ⇥ C =
n

hp, ci | p 2 P , R3, c 2 C
o

. (3)

Here C denotes a color space e.g. RGB, CIE L*A*B*, etc.
The following quantities are calculated using Principal Com-

ponent Analysis (PCA) on the point-cloud P to describe the
dimensions of the object:

�min , 2 · 3p�min, �max , 2 · 3p�max, (4a)

�d ,
1
2
· 6p�med + �min, (4b)

where, �max, �med, �min are sorted eigenvalues of the covariance
matrix calculated during PCA. �min and �max are respectively the
minimum and maximum extent of the object. The PCA on the set
P can be viewed as an ellipsoidal approximation of the object’s
shape. Thus, the diameter �d of gyration of the ellipsoid about
the principle PCA axis can be interpreted as the approximate
diameter of the object. As described in Sec. IV-A, these three values

Fig. 2. A model of the Silk Original soy milk carton on the left and the
corresponding SURF feature locations on the right.

⌃ , {�min, �max, �d} are used to find regions of interest during the
recognition phase.

In addition to the geometric properties, the model also contains
a set of local invariant texture features [12].

D , D ⇥ P =
n

hd(n), pi | d(n) 2 Rn, p 2 P
o

(5)

The n-dimensional feature descriptor vectors d(n) are coupled with
their locations on the object to aid feature matching and localization
steps (Sec. V).

Thus, the object model is defined by the 3-tuple hP,D,⌃i. The
example of a model for one of the objects from Solutions in
Perception Challenge data-set is illustrated in Fig. 2. The transparent
ellipsoid represents the three-sigma PCA approximation of the
object’s shape. Its minor, medial and major axes are demonstrated
respectively by red, green and blue arrows. The purple circle
surrounding the object has the radius of �d.

IV. Segmentation

Segmentation is the process of dividing a range-image into
connected components or segments, each of which is a smooth
surface patch which is separated from its neighbors by jump
or crease edges. A jump edge is formed when two neighboring
segments have a physical separation causing a C0 discontinuity in
the range values. A crease edge, on the other hand, is a C1 range-
discontinuity between segments which physically touch along the
edge. Each segment represents a facet – not necessarily planar – of
an object in the scene.

The segmentation algorithm devised by us is an extension of
that presented in [13] and is summarized in Algorithm 1. A scan-
line in a range-image is defined as either a row, a column, or a
diagonal (ascending or descending) of the range-image. Each scan-
line is processed separately, and is split into curve-segments using
the method of [14], also known as the Ramer-Douglas-Peucker
algorithm. Essentially, a scan-line can be considered as a piece-wise
smooth mapping from the scan-line pixel-index x 2 Z to the range
or depth value z 2 R. Algorithm 1 is used to find this mapping: in
other words, it finds the edge-points which separate the scan-line
into sub-segments, each of which is a smooth function z = fi(x).
Two main functions of the Algorithm 1 are Fit and Split.

In the Fit function, a polynomial is fitted to a given sub-segment
of a scan-line. This can be done in several ways.
• Simple linear (SL) or quadratic (SQ): For the linear version,

the first and last points of the sub-segment are used to fit a
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Algorithm 1: Scan-Line Edge-Detection
Input: A set C of scan-lines: rows, columns, or diagonals of a

range-image.
Output: A set of smooth sub-segments S f of all scan-lines in C.
forall the c 2 C do

From scan-line c, form an initial stack Sc of connected
valid-range segments, separated by invalid ranges;

while |Sc| , 0 do
s Sc.Pop() ;
Fit(s) ;
if Split(s, split-index) then

left-segm  s[0 . . . split-index] ;
right-segm  s[split-index . . . end-index] ;
Sc.Push(left-segm), Sc.Push(right-segm) ;

Mark edge-point s[split-index] ;
else
S f .Push(s) ;

end
end

end

unique line; for the quadratic version, the mid-point is also
added to fit a unique quadratic polynomial.

• Least-squares linear (LSL) or quadratic (LSQ): All points in
the sub-segment are considered, and a linear or a quadratic
polynomial is fitted using a standard least-squares method,
minimizing the sum of algebraic residuals.

• Adaptive (AD): This is our extension of the algorithm. Recall
that for a least-squares model-fitting – assuming a constant
known Gaussian noise with variance �2 in all samples – the
Akaike Information Criterion (AIC), and its corrected version
for small sample-size (AICc) [15], for the model-fit may be
defined as

AIC
�{ri},K,N� = 2K +

1
�2

N
X

i=1

r2
i � 2C, (6)

AICc = AIC +
2K(K + 1)

(N � K � 1)
, (7)

where, K is the number of parameters in the model, C is a
constant, depending only on the known parameter �2, N is the
number of samples, and ri is the least-squares fitting residual
for the sample i.
The adaptive strategy consists of fitting a least-squares linear
polynomial (K = 2) on the sub-segment, followed by fitting a
least-squares quadratic polynomial (K = 3), and selecting the
one with the lower value of AICc.

The function Split consists of checking if a sub-segment s of
a scan-line c can be spit further into subsegments, and if so, at
which x. This x value is denoted by split-index. The function
returns true, if the splitting is to take place. For a sub-segment
to be considered for further splitting, it should have at least �min

points. There are two main splitting strategies.
• Maximum residual (MR): The candidate splitting point in the

sub-segment is the one with the maximum residual rm from
the fitted polynomial. The splitting is done if rm > ✏, where ✏
depends on the noise level of the data. This strategy has been
followed in [13]. Although in [13] both SQ and LSQ were
used for fitting, they did not discuss an important problem
which often arises when using LSQ with MR, namely, that
many times the candidate split-point turns out to be the very

TABLE II
Main Edge-DetectionModes.

Mode Fitting Splitting Time (s)
Simple-Linear SL MR 2.3
Simple-Quadratic SQ MR 2.3
LS-AICC AD MAIC 13.1
LS-Mixed SQ+AD MR+MAIC 3.5

first point of the sub-segment. This does not occur when using
SQ with MR as the residual at the end-points is explicitly
zero. We have hence concluded that LSQ+MR is not a good
combination.

• Minimum AICc (MAIC): This is our extension of the algo-
rithm. For a sub-segment s, after doing an adaptive fitting,
all points where the residual achieves a local maximum are
considered potential splitting points. We consider all of these
potential points in turn, and compute the decrease in AICc on
hypothetically splitting the segment at that point. If none of
the candidates lead to a decrease in AICc as compared to the
un-split segment, no splitting is performed; else, the candidate
which leads to the most decrease is selected as the splitting
point. Note that fitting for all subsegments is done adaptively,
i.e. their number of parameters is adaptively selected.

Based on the above description, and after doing some experimen-
tation, we came up with four combined strategies for comparison,
as listed in Table II. The runtime listed is for the processing of the
whole image, i.e. for all rows, columns, and diagonals. In mode LS-
Mixed, fitting and splitting strategies are based on those of Simple-
Quadratic initially; after the segment size reduces below �min fmixed,
the strategy switches to that of LS-AICC. This strategy is thus a
compromise in the trade-o↵ between quality and computation time,
and hence is our default strategy due to its good results. Please
refer to Fig. 3(b) for the quality of edge-detection on range images
collected using the Kinect sensor with the parameters ✏ = � = 0.015
m, �min = 4 and fmixed = 12. The switching of strategies was done
when a sub-segment size had reduced to 48 pixels.

A. Filtering-out and Smoothing Objects of Interest

The edge-points in the left sub-figures of Fig. 3 do not yet form
closed boundaries of the object surface patches they demarcate. To
achieve this, certain morphological transforms, as implemented in
OpenCV [16], are applied, which is also done in [13]. In particular,
an erosion with a kernel size of 5 followed by a dilation with a
kernel size of 3 gave satisfatory separation of connected components
for the 3D sensor employed.

From the training phase, the algorithm has good estimates of
the dimensions of the objects it is looking for. The sizes of all
trained objects are used to come up with minimum and maximum
thresholds, which can be used to filter out extraneous objects
and the background. Any predominantly planar objects which
are significantly bigger than the thresholds are filtered out first.
This is accomplished by first applying a distance-transform (DST
implementation in OpenCV) on the edge-points image: the peaks
of the resulting image give points which are far away from the
edges and hence are good seeds to grow planar patches from. A
region-growing algorithm [17] was used to grow planar patches.
All dominant planar patches, which cannot possibly be part of an
object of interest due to their size, are filtered out irrespective of
their orientation. This typically removes walls, table-tops, etc. and
makes subsequent processing much simpler.

After removing large planes, a connected-components algorithm

3477



(a) The original colored range-
image.

(b) Mode LS-Mixed. (c) The final smoothened filtered
out objects of interest.

Fig. 3. Results of segmentation for one of the example test scenes. The left image in Fig. 3(b) shows the found edge-points using LS-Mixed mode.
The point-color denotes the convex/concave categorization of the edge w.r.t the view point. The images on the right show the color connected-components
representing object patches. Before running the connected-components algorithm a morphological transform was applied to clearly separate the components.

[18] is run to find potential object components as shown in the
right side sub-figure of Fig. 3(b), where each component is given a
unique color. To these remaining connected components, Principal
Component Analysis (PCA) is performed and components with
dimensions not falling within the limits determined during the
training phase are removed. Finally, we expand and smoothen
the remaining components. This is done by fitting a 3D quadric
surface [19] on a found component and testing its neighboring
points to see if they satisfy the quadric equation within some
bounds: if they do, they are made part of the component. This
results in filling-in of holes and smoothing of the components
which now represent object surface patches— these are shown in
Fig. 3(c). Interestingly, the time taken for removing large planes,
finding connected-components, and filtering-out objects of interest,
followed by smoothing them, was 0.13 sec., which is a fraction
of the time required for scan-line edge-detection (Table II, mode
LS-Mixed).

V. Feature Extraction andMatching

After the segmentation step the regions of interest are combined
into a global mask. Then a standard feature extraction pipeline is
applied on this image mask. Firstly, a set of distinctive keypoints is
detected and then the region content around each of the keypoints
is summarized in feature descriptor vectors. Instead of keeping
keypoints defined in image coordinates, the corresponding 3D
positions resolved in the object frame are calculated using relations
in equation (2b). The 3D keypoint-descriptor pairs define the set
Ds. Then for all objects oi in model data-base, their feature-set Di

is matched against feature-set in the scene using Algorithm 2.
The matching algorithm starts by finding a set of fea-

ture correspondence pairs between the object and the scene -
FindFeatureCorrespondences. For each feature vector ⌧ j.d(n),
⌧ j 2 Di the nearest neighbor ⌧?.d(n), ⌧? 2 Ds is found using
Euclidean distance in the feature space. If distance between features
is small enough i.e. k⌧ j.d(n) � ⌧?.d(n)k < � f , then the pair h⌧ j, ⌧?i is
added to the list of potential correspondences - T f . Note that the
uniqueness of the closest feature is not tested. This is usually done
using the ratio between the distances to the two closest features.
We have tried di↵erent strategies and the results were better when
the additional filtering by the ratio was not applied. Using only
the nearest features increases both the number of correct and

Algorithm 2: RANSAC Based Feature Matching
Input: Ds, Di
Output: Ts

i and cmax - size of the maximum consensus set.
T f  FindFeatureCorrespondences(Ds, Di);
T f  Sort(T f );
T↵  Filter(T f , ↵);
forall the h ⌧s 1, ⌧

o
1i 2 T↵ do

T2  FindConsistent(h ⌧s 1, ⌧
o

1i, T f );
T�  Filter(T2, �);

forall the h ⌧s 2, ⌧
o

2i 2 T� do
T3  FindConsistent(h ⌧s 2, ⌧

o
2i, T�);h Ts

i j, c ji  RANSAC(T3, nr);
if c j > cn then

cn  c j;
Ts

i  Ts
i j;

end
end

end

false correspondences. The higher rate of the false correspondence
pairs is acceptable since they are e↵ectively eliminated by the 3D
geometric constraints during the matching algorithm. The full set of
correspondences T f is then sorted by the correspondence distance
and only ↵% with the smallest distances are kept for the outer loop.

For each element h ⌧s 1, ⌧
o

1i 2 T↵ a set of geometrically
consistent correspondences is constructed. Two feature pairs
h ⌧s 1, ⌧

o
1i, h ⌧s 2, ⌧

o
2i 2 Ds ⇥ Do are geometrically consistent if the

following equation is satisfied
�

�

� ⌧s 2.p � ⌧s 1.p
�

�

� =
�

�

� ⌧o 2.p � ⌧o 1.p
�

�

� . (8)

This first test is based on the observation that if the object in the
scene and its model have the same scale then the layout of the
features with respect to each other is preserved. Thus the distances
from all model features ⌧o j to a fixed feature ⌧o 1 are the same as
the distances of their correct counterparts in the scene ⌧s j to the
corresponding fixed feature ⌧s 1.

After keeping the best �% correspondences from the T2 set the
inner loop fixes the second correspondence pair - h ⌧s 2, ⌧

o
2i 2 T�.

The additional constraint introduced by the second pair allows us
to further reduce the number of candidate correspondences. The
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Fig. 4. If the objects in the scene and their models are of the same scale
then the triangles formed by three correct correspondences are congruent

T3 is formed of the features geometrically consistent with the
fixed correspondences. The geometric constraints introduced by two
fixed correspondence pairs are illustrated in Fig. 4. For any correct
correspondence h ⌧s j, ⌧

o
ji 2 T� the triangles h ⌧s 1.p, ⌧

s
2.p, ⌧

s
j.pi and

h ⌧o 1.p, ⌧
o

2.p, ⌧
o

j.pi have to be congruent.
Though heavily pruned, the set T3 ⇢ T f still might have

outliers due to the sensor noise and approximation by the parameter
� f . Also, since only two correspondences were fixed, there still
might be geometrically inconsistent correspondences. To address
these problems a standard RANSAC algorithm [11] is applied on
the set T3. Three correspondences are randomly selected and the
transformation Ts

o between the model and the scene is estimated
using [20]. Then the consesus set is created: a feature pair is
considered consistent if

�

�

� ⌧s j.p � Ts
o ⌧o j.p

�

�

�  �d. (9)

After nr iterations all correspondences in the largest consensus set
are used to recalculate the final estimate Ts

o . The rate of outliers in
the set T3 is very low. In most of the cases the largest consensus set
is equal to T3, therefore only few iterations are needed. As specified
in Table III we have used nr = 100.

The final result of the Algorithm 2 is the transformation cal-
culated using the largest consensus set obtained by fixing di↵er-
ent correspondences in the loops. The worst case computational
complexity for the object with feature set D is O(|D|3). However,
in practice, due to geometric constraints and parameters ↵, � and
� f , the matching can be used in real-time applications even with
feature-sets of size up to 105.

VI. Reprojection Test
The matching algorithm described in the previous section is

applied to all the models oj, j = 1 . . . n in the training database.
Thus for each object an estimate of its best location in the scene
Ts

j is determined based on the largest consensus set with size c j. In
many cases, if the object is not in the scene, even the minimum
consensus set (of size 3) is not constructed due to the small
initial correspondence set and geometric constraints. However the
local feature descriptors and their configuration in 3D space are
not always enough to distinguish objects uniquely; therefore false
positives have to be eliminated.

The size of the consensus set could already be used as the criteria
for discarding objects not present in the scene, but for which the
location estimate has been generated. Unfortunately, the variation
in the number of features per model is quite large. Less textured
objects would have always small consensus sets even though they
are present in the scene, whereas highly textured objects would
usually have a larger subset of features which would be consistent
with some part of the scene. Therefore, more complicated tests
are needed for checking the hypotheses. For this, we perform
a simulation of data collection using a sensor model and the

hypotheses generated by Algorithm 2. The consistency between the
simulated data and the real measurements is then checked for the
identification of the correct hypotheses.

As described in Sec. III, the object model oj is defined by
the three-tuple hP j,D j,⌃ ji. The set of colored points P j can be
transformed to the sensor frame using the hypothesis about its
location - Ts

j . Using the camera model Eq. (??), these points can
be projected onto the image plane. We have used depth-bu↵er for
projecting only those parts of the object which are visible from the
position of the sensor. Thus for each object oj in the data-base, an
RGB-D image Ms

j is generated.

Ms
j( ms ) = argmin

⌧s 2 Ps ( ms )

k ⌧s .pk, (10)

Ps ( ms ) ,
n

⌧s , h Ts
j ⌧

j .p, ⌧j .ci | ms ' C ⌧s .p
o

(11)

Let M j , { ms |9 ⌧j 2 Pj : ms ' C Ts
j ⌧

j .p} be a set of discrete
image coordinates obtained by projecting object model oj. Also we
denote S = {S1,S2, . . .Sn} to be a set of regions of interests obtained
after the segmentation described in Sec. IV. Each of the regions is
defined by a set of image coordinates. Then the following quantities
are used to determine consistency between real and modeled data.

sd ,

P

m2M j
1d{m, Ms

j(m)}
|M j| (12)

sc ,

P

m2M j
1c{m, Ms

j(m)}
|M j| (13)

f (S) ,
X

m2M j\S
1d{m, Ms

j(m)} ^ 1c{m, Ms
j(m)}

so ,
f (S?)
|S?| , S

? , argmax
S2S

f (S) (14)

The quantities defined in equations (12) and (13) respectively are
distance and color consistency measures. For each pixel m in the
mask M j of the projected model consistency is checked using
indicator functions 1d{·} and 1c{·}. The depth similarity at pixel
m is evaluated by comparing the range values at the same pixel in
the simulated and the real RGB-D images:

1d(m, ⌧) ,
(

1, |k Ms (m).pk � k⌧.pk| < "d

0, else. (15)

Color consistency is checked using a small window of size 2w + 1
around pixel m in the real range image:

1c(m, ⌧) ,
(

1, 9b 2 Bw(m): k Ms (b).c � ⌧.ckc < "c

0, else ,

Bw(m) , {b | |mu � bu|  w ^ |mv � bv|  w}. (16)

Where, k · kc is a color similarity metric. We have used CIE
L*A*B* space where the perceptual di↵erence between colors can be
approximated by the Euclidean distance between the color vectors.

As it has already been discussed segments S 2 S are assumed to
be subsegments of the objects, i.e. we assume over-segmentation.
If the hypothesis about the object’s location is correct then there
must exist a segment with high consistency S? in the overlap
between reprojected model and the segments in the real image {S 2
S|M\S , ;}. This requirement is expressed in equation (14), where
function f (·) measures overlap consistency by comparing colors and
ranges between simulated and real data. Using this function we
can calculate the last quantity so needed for the consistency test. It
measures coverage rate of the segment with the highest consistent
overlap.
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Fig. 5. A snapshot of all 35 objects from Willow Garage data-set on the
left and a textured manufacturing part from NIST collection on the right
[21]

Based on definitions (12), (13) and (14) the final consistency test
is done using the following inequality.

(4c · sc + (1 � 4c) · sd) · so � ✓c, (17)

where scalar 0  4c  1 is the weight factor for the color
consistency measure and the threshold 0  ✓c  1 is the lowest
allowed total consistency for the hypothesis to be considered
correct. Thus, if the inequality (17) holds then the object oj is
considered to be in the scene at location Ts

j . If there are at least two
objects satisfying inequality (17), but having the same segment S?

as the best overlaping region then only the object with the highest
total conistency is considered to be detected.

So far we have described how to detect single instance of an
object, however there might be multiple occurences of the same
object in the scene. For detecting other instances of the same
object we first remove corresponding segments of the recognized
objects and then repeat the matching and reprojection steps with the
remaining segments and objects with the total consistency higher
than ✓c/2. These steps are re-iterated until no more objects are
detected.

VII. Experiments and Benchmarking
The approach described in the previous sections has been tested

in a context of Solutions in Perception Challenge at International
Conference on Robotics and Automation 2011 [21]. This was
the first competition and it concentrated on the recognition and
localization in 3D of textured objects at close range (approximately
within 2 meters). The challenge made use of Kinect sensor which
is able to produce RGB-D image at one mega-pixel resolution.

The data used for the challenge consisted of two data-sets totaling
50 objects. The first set, henceforth WG data-set, of 35 common
household objects Fig. 5 was provided by researchers from Willow
Garage before the competition. It contained extensive training
sequences for each of the objects and example test scenarios with
multiple objects per scene. The second data-set, henceforth NIST
data-set, containing 15 objects was hidden from the participants to
test robustness and generality of the developed algorithms. It com-
prised of textured manufacturing parts. Only single representitive
example was available to the contestants before the testing phase
of the competition. A picture of a typical object from the NIST
data-set is shown in Fig. 5 on the right-hand side.

The recognition software developed by the participants had to be
submitted to the competition committee. The algorithms were then
trained and tested on their servers using before undisclosed data-sets
containing one or more trained objects per frame. The test sequence
with objects from WG data-set comprised of 176 frames with 434
recognizable objects in total. The NIST data-set had 831 object
instances distributed over 399 frames. Full data was published after
the challenge and is available online [21].

TABLE III
Values of the main algorithm parameters used for the competition

Parameters Description Values
� f , �d Feature and distance similarity thresholds 1.0, 15 mm
nr ,↵ Feature matching parameters 100, 0.1
w,4c, ✓c Reprojection parameters 4, 0.6, 0.4

The performance of the algorithms was evaluated at each frame
using combinatorial scoring function based on the recognition rate
and localization precision. The recognition score was dependant
on the number of correct detections (true positives), incorrect
detections (false positives) and undetected objects (false negatives),
whereas localization score linearly decreased with increasing de-
viation of the pose estimate from the ground-truth. The detailed
definitions of the contributing terms can be found in [21]. The
final score of a team was expressed as percentage of the maximum
possible score over all frames.

There are several implementation details to be mentioned before
proceeding to the results. Firstly, object models Sec. III were created
using the training data provided by the committee of the compe-
tition. It was recorded using Kinect sensor and Robot Operating
System (ROS) [22]. Each of the textured objects was scanned
from di↵erent view-points using rotating support and fiducial for
estimation of the object-camera relation. The raw data had to
be further processed to create models required by our algorithm.
This included object segmentation, extraction of local invariant
features, registration and some post-processing tasks. As the type
of visual features we have chosen SURF with dimension n = 128.
We have used OpenCV implementation for detecting key-points
and computing descriptor vectors. The algorithm was optimized to
produce the best performance within allowed time limit - 15 s. per
frame.

Using the parameters listed in Table III the algorithm achieved
the best score among all participants - 82.2% (682.61/831) on
NIST data-set and the second result 50.6% (219.94/434) on Willow
Garage data-set. The final combined score 66.41% took the second
place behind the best score 68.78% achieved by the team from
UC Berkeley. The number of true positives, false negatives, false
positives, and the accuracy of position estimates were respectively
750, 81, 2, 86% for NIST and 301, 133, 50, 75.4% for WG test
sets. Note that only true positives are included in the calculation of
the localization accuracy. Further details on the competition results
can be found in [21].

The final decision about the presence of an object instance in the
scene is done using the reprojection parameter ✓c. Therefore more
detailed analysis of the algorithm’s sensitivity to the variations of
the decision threshold is depicted in Fig. 6.

VIII. Conclusions

In this work we have presented an approach to object recognition
and localization using visual and geometric cues available from
RGB-D data. In addition to aiding the standard pipeline of visual
object recogntion with depth information we have extended segmen-
tation algorithm [13] to achieve better performance. As it already
was emphasized the parameters of the edge-detection algorithm
were set to achieve over-segmentation. Finding sub-segments of the
objects does not require strong assumptions about the environment
and as it was shown in this paper it can be applied in many stages
of the object recognition process. One of them is reprojection test
which was introduced by us to test the hypotheses about the objects
present in the scene.
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Fig. 6. Score dependency on the reprojection parameter ✓c and related precision-recall curves. The dashed vertical lines and the red circles indicate the
parameter value ✓c = 0.4 used for the competition.

The algorithm showed a good performance among eight entries to
the Solutions In Perception Challenge by achieving the second best
result, 66.41% of the maximum score, with only 2.37% di↵erence
from the first place.
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