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Abstract. Motion analysis is typically used for a range of diagnostic
procedures in the hospital. While automatic pose estimation from RGB-D
input has entered the hospital in the domain of rehabilitation medicine and
gait analysis, no such method is available for bed-ridden patients. However,
patient pose estimation in the bed is required in several fields such as sleep
laboratories, epilepsy monitoring and intensive care units. In this work,
we propose a learning-based method that allows to automatically infer
3D patient pose from depth images. To this end we rely on a combination
of convolutional neural network and recurrent neural network, which we
train on a large database that covers a range of motions in the hospital
bed. We compare to a state of the art pose estimation method which is
trained on the same data and show the superior result of our method.
Furthermore, we show that our method can estimate the joint positions
under a simulated occluding blanket with an average joint error of 7.56 cm.

Keywords: pose estimation, motion capture, occlusion, CNN, RNN,
random forest

1 Introduction

Human motion analysis in the hospital is required in a broad range of diagnostic
procedures. While gait analysis and the evaluation of coordinated motor func-
tions [1, 2] allow the patient to move around freely, the diagnosis of sleep-related
motion disorders and movement during epileptic seizures [3] requires a hospital-
ization and long-term stay of the patient. In specialized monitoring units, the
movements of hospitalized patients are visually evaluated in order to detect criti-
cal events and to analyse parameters such as lateralization, movement extent or
the occurrence of pathological patterns. As the analysis of patient movements can
be highly subjective [4], several groups have developed semi-automatic methods
in order to provide quantified analysis. However, in none of the above works,
a full body joint regression has been attempted, which would be necessary for
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ŷ1

ŷ2
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Fig. 1. Data generation and training pipeline. Motion capture (left) allows to retrieve
ground truth joint positions y, which are used to train a CNN-RNN model on depth
video. A simulation tool was used to occlude the input (blue) with a blanket (grey),
such that the system can learn to infer joint locations ŷ even under blanket occlusion.

automatic and objective quantification of patient movement. In this work, we
propose a new system for fully automatic continuous pose estimation of hospital-
ized patients, purely based on visual data. In order to capture the constrained
body movements in the hospital bed, we built up a large motion database that
is comprised of synchronized data from a motion capture system and a depth
sensor. We use a novel combination of a deep convolutional neural network and
a recurrent network in order to discriminatively predict the patient body pose in
a temporally smooth fashion. Furthermore, we augment our dataset with blanket
occlusion sequences, and show that our approach can learn to infer body pose
even under an occluding blanket. Our contributions can be summarized as follows:
1.) proposing a novel framework based on deep learning for real time regression
of 3D human pose from depth video, 2.) collecting a large dataset of movement
sequences in a hospital bed, consisting of synchronized depth video and motion
capture data, 3.) developing a method for synthetic occlusion of the hospital bed
frames with a simulated blanket model, 4.) evaluating our new approach against
a state-of-the-art pose estimation method based on Random Forests.

2 Related Work

Human pose estimation in the hospital bed has only been approached as a
classification task, which allows to estimate a rough pose or the patient status [5,
6]. Li et al. [5] use the Kinect sensor SDK in order to retrieve the patient pose and
estimate the corresponding status. However, they are required to leave the test
subjects uncovered by a blanket, which reduces the practical value for real hospital
scenarios. Yu et al. [6] develop a method to extract torso and head locations and
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Fig. 2. Snapshots of iterations of the physics simulation that was used to generate
depth maps occluded by a virtual blanket.

use it to measure breathing motion and to differentiate sleeping positions. No
attempt was made to infer precise body joint locations and blanket occlusion
was reported to decrease the accuracy of the torso detection. While the number
of previous works that aim at human pose estimation for bed-ridden subjects is
limited, the popularity of depth sensors has pushed research on background-free
3D human pose estimation. Shotton et al. [7] and Girshick et al. [8] train Random
Forests on a large non-public synthetic dataset of depth frames in order to capture
a diverse range of human shapes and poses. In contrast to their method, we
rely on a realistic dataset that was specifically created to evaluate methods for
human pose estimation in bed. Furthermore, we augment the dataset with blanket
occlusions and aim at making it publicly available. More recently, deep learning
has entered the domain of human pose estimation. Belagiannis et al. [9] use a
convolutional neural network (CNN) and devise a robust loss function to regress
2D joint positions in RGB images. Such one-shot estimations however do not
leverage temporal consistency. In the work of Fragkiadaki et al. [10], the authors
rely on a recurrent neural network (RNN) to improve pose prediction on RGB
video. However in their setting, the task is formulated as a classification problem
for each joint, which results in a coarse detection on a 12 × 12 grid. Our method
in contrast produces accurate 3D joint predictions in the continuous domain, and
is able to handle blanket occlusions that occur in hospital monitoring settings.

3 Methods

3.1 Convolutional Neural Network

A convolutional neural network is trained for the objective of one-shot pose
estimation in 3D. The network directly predicts all 14 joint locations y which
are provided by the motion capture system. We use an L2 objective during
stochastic gradient descent training. Incorrect joint predictions ŷ result in a
gradient g = 2 · (ŷ − y), which is used to optimize the network weights via
backpropagation. An architecture of three convolutional layers followed by two
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fully connected layers proved successful for this task. The layers are configured
as [9-9-64]/[3-3-128]/[3-3-128]/[13-5-1024]/[1024-42] in terms of [height-width-
channels]. A [2x2] max pooling is applied after each convolution. In order to
achieve better generalization of our network, we use a dropout function before
the second and before the fifth layer during training, which randomly switches
off features with a probability of 50 %. Rectified linear units are used after every
learned layer in order to allow for non-linear mappings of input and output. In
total, the CNN has 8.8 million trainable weights. After convergence, we use the
1024-element feature of the 4th layer and pass it to a recurrent neural network in
order to improve the temporal consistence of our joint estimations. An overview
of the full pipeline of motion capture and depth video acquisition as well as the
combination of convolutional and recurrent neural network is shown in Figure 1.

3.2 Recurrent Neural Network

While convolutional neural networks have capability of learning and exploiting
local spatial correlations of data, their design does not allow them to learn tem-
poral dependencies. Recurrent neural networks on the other hand are specifically
modeled to process timeseries data and can hence complement convolutional
networks. Their cyclic connections allow them to capture long-range dependencies
by propagating a state vector. Our RNN is built in a Long Short Term Memory
(LSTM) way and its implementation closely follows the one described in Graves
et al. [11]. We use the 1024-element input vector of the CNN and train 128 hidden
LSTM units to predict the 42-element output consisting of x-, y- and z-coordinate
of each of the 14 joints. The number of trainable weights of our RNN is around
596,000. During training, backpropagation through time is limited to 20 frames.

3.3 Patient MoCap Dataset

Our dataset consists of a balanced set of easier sequences (no occlusion, little
movement) and more difficult sequences (high occlusion, extreme movement) with
ground truth pose information. Ground truth is provided through five calibrated
motion capture cameras which track 14 rigid targets attached to each subject. The
system allows to infer the location of 14 body joints (head, neck, shoulders, elbows,
wrists, hips, knees and ankles). All test subjects (5 female, 5 male) performed 10
sequences, with a duration of one minute per sequence. Activities include getting
out/in the bed, sleeping on a horizontal/elevated bed, eating with/without clutter,
using objects, reading, clonic movement and a calibration sequence. During the
clonic movement sequence, the subjects were asked to perform rapid twitching
movements of arms and legs, such as to display motions that occur during the
clonic phase of an epileptic seizure. A calibrated and synchronized Kinect sensor
was used to capture depth video at 30 fps. In total, the dataset consists of
180, 000 video frames. For training, we select a bounding box that only contains
the bed. To alleviate the adaption to different hospital environments, all frames
are rendered from a consistent camera viewpoint, fixed at 2 meters distance from
the center of the bed at a 70 degree inclination.
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Fig. 3. Worst case accuracy computed on 36,000 test frames of the original dataset.
On the y-axis we plot the ratio of frames in which all estimated joints are closer to the
ground truth than a threshold D, which is plotted on the x-axis.

3.4 Blanket Simulation

Standard motion capture technologies make it impossible to track bodies under
blankets due to the necessity of the physical markers to be visible to the tracking
cameras. For this reason, we captured the ground truth data of each person lying
on the bed without being covered. We turned to physics simulation in order to
generate depth maps with the person under a virtual blanket. Each RGB-D frame
is used as a collision body for a moving simulated blanket, represented as a regular
triangle mesh. At the beginning of a sequence, the blanket is added to the scene at
about 2 meters above the bed. For each frame of the sequence, gravity acts upon
the blanket vertices. Collisions are handled by using a sparse signed distance
function representation of the depth frame, implemented in OpenVDB [12]. See
Figure 2 for an example rendering. In order to optimize for the physical energies,
we employ a state-of-the-art projection-based dynamics solver [13]. The geometric
energies used in the optimization are triangle area preservation, triangle strain
and edge bending constraints for the blanket and closeness constraints for the
collisions, which results in realistic bending and folding of the simulated blanket.

4 Experiments

As to validate our method, we compare to the regression forest (RF) method
introduced by Girshick et al. [8]. The authors used an RF to estimate the body
pose from depth data. At the training phase, random pixels in the depth image are
taken as training samples. A set of relative offset vectors from each sample’s 3D
location to the joint positions is stored. At each branch node, a depth-difference
feature is evaluated and compared to a threshold, which determines if the sample
is passed to the left or the right branch. Threshold and the depth-difference
feature parameters are jointly optimized to provide the maximum information
gain at the branch node. The tree stops growing after a maximum depth has been
reached or if the information gain is too low. At the leaves, the sets of offsets
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Fig. 4. Average per joint error on the blanket occluded sequence.

vectors are clustered and stored as vote vectors. During test time, body joint
locations are inferred by combining the votes of all pixels via mean shift. The
training time of an ensemble of trees on >100k images is prohibitively long, which
is why the original authors use a 1000-core computational cluster to achieve
state-of-the-art results [7]. To circumvent this requirement, we randomly sample
10k frames per tree. By evaluating the gain of using 20k and 50k frames for
a single tree, we found that the accuracy saturates quickly (compare Figure 6
of [8]), such that using 10k samples retains sufficient performance while cutting
down the training time from several days to hours.

4.1 Comparison on the Patient MoCap Dataset

We fix the training and test set by using all sequences of 4 female and 4 male
subjects for training, and the remaining subjects (1 female, 1 male) for testing.
A grid search over batch sizes B and learning rates η provided B = 50 and
η = 3 · 10−2 as the best choice for the CNN and η = 10−4 for the RNN. The
regression forest was trained on the same distribution of training data, from
which we randomly sampled 10,000 images per tree. We observed a saturation
of the RF performance after training 5 trees with a maximum depth of 15. We
compare the CNN, RNN and RF methods with regard to their average joint error
(see Table 1) and with regard to their worst case accuracy, which is the percentage
of frames for which all joint errors satisfy a maximum distance constraint D,
see Figure 3. While the RNN reaches the lowest average error at 12.25 cm, the
CNN appears to have less outlier estimations which result in the best worst case
accuracy curve. At test-time, the combined CNN and RNN block takes 8.87 ms to
infer the joint locations (CNN: 1.65 ms, RNN: 7.25 ms), while the RF algorithm
takes 36.77 ms per frame.

4.2 Blanket Occlusion

A blanket was simulated on a subset of 10,000 frames of the dataset (as explained
in Section 3.4). This set was picked from the clonic movement sequence, as it is
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Fig. 5. Examples of estimated (red) and ground
truth skeletons (green). Pose estimations work with-
out (a,b) and underneath (c,d) the blanket (blue).

Table 1. Euclidean distance er-
rors in [cm]. Error on the oc-
cluded test set decreases after
retraining the models on blan-
ket occluded sequences (+r).

sequence CNN RNN RF

all 12.69 12.25 28.10

occluded 9.05 9.23 21.30

occluded+r 8.61 7.56 19.80

most relevant to clinical applications and allows to compare one-shot (CNN and
RF) and time series methods (RNN) on repetitive movements under occlusion.
The three methods were trained on the new mixed dataset consisting of all
other sequences (not occluded by a blanket) and the new occluded sequence.
For the RF, we added a 6th tree which was trained on the occluded sequence.
Figure 4 shows a per joint comparison of the average error that was reached on
the occluded test set. Especially for hips and legs, the RF approach at over 20 cm
error performs worse than CNN and RNN, which achieve errors lower than 10 cm
except for the left foot. However, the regression forest manages to identify the
head and upper body joints very well and even beats the best method (RNN) for
head, right shoulder and right hand. In Table 1 we compare the average error on
the occluded sequence before and after retraining each method with blanket data.
Without retraining on the mixed dataset, the CNN performs best at 9.05 cm error,
while after retraining the RNN clearly learns to infer a better joint estimation
for occluded joints, reaching the lowest error at 7.56 cm. Renderings of the RNN
predictions on unoccluded and occluded test frames are shown in Figure 5.

5 Conclusions

In this work we presented a unique hospital-setting dataset of depth sequences
with ground truth joint position data. Furthermore, we proposed a new scheme for
3D pose estimation of hospitalized patients. Training a recurrent neural network
on CNN features reduced the average error both on the original dataset and
on the augmented version with an occluding blanket. Interestingly, the RNN
benefits a lot from seeing blanket occluded sequences during training, while the
CNN can only improve very little. It appears that temporal information helps
to determine the location of limbs which are not directly visible but do interact
with the blanket. The regression forest performed well for arms and the head,
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but was not able to deal with occluded legs and hip joints that are typically close
to the bed surface, resulting in a low contrast. The end-to-end feature learning
of our combined CNN-RNN model enables it to better adapt to the low contrast
of occluded limbs, which makes it a valuable tool for pose estimation in realistic
environments.
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