Passthrough+: Real-time Stereoscopic View Synthesis for
Mobile Mixed Reality

GAURAV CHAURASIA, Facebook, Switzerland

ARTHUR NIEUWOUDT, Facebook, United States
ALEXANDRU-EUGEN ICHIM, Facebook, Switzerland
RICHARD SZELISKI, Facebook, United States

ALEXANDER SORKINE-HORNUNG, Facebook, Switzerland

ll ll | \l ll J‘

Fig. 1. We present stereoscopic view synthesis to display live first person viewpoints on VR devices. We
use images from device cameras to compute a 3D reconstruction and warp the images using the 3D data
to the viewpoint of user’s eyes at display rate. From left to right: (a-b) our view synthesis is designed for
indoor environments; we tested it on a wide range of layouts, lighting conditions, furniture etc. (c) This
provides haptic trust; users can reach out and grab nearby objects guided by the stereoscopic view. (d) Our
view synthesis is deployed on Oculus Quest VR devices as Passthrough+ feature to allow users see their
surroundings while they are marking a vacant play area in their room to enjoy VR content.

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view
synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as
their eyes to see and interact with the real world while still wearing their headset, a feature often referred
to as Passthrough. The central challenge when building such a system is the choice and implementation
of algorithms under the strict compute, power, and performance constraints imposed by the target user
experience and mobile platform. A key contribution of this paper is a complete description of a corresponding
system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption
on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include
the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth
densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide
a detailed discussion and evaluation of the challenges we encountered, as well as algorithm and performance
trade-offs in terms of compute and resulting passthrough quality.

The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by
publishing the underlying system and methods, we provide valuable insights to the community on how to
design and implement real-time environment sensing and rendering on heavily resource constrained hardware.

Authors’ addresses: Gaurav Chaurasia, gchauras@fb.com, Facebook, Giesshiibelstrasse 30, 8045, Ziirich, Switzerland;
Arthur Nieuwoudt, arthurn@fb. com, Facebook, United States; Alexandru-Eugen Ichim, alex.ichim@fb. com, Facebook,
Switzerland; Richard Szeliski, szeliski@fb.com, Facebook, United States; Alexander Sorkine-Hornung, alexsh@fb. com,
Facebook, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2577-6193/2020/5-ART7

https://doi.org/10.1145/3384540

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://doi.org/10.1145/3384540

7:2 Gaurav Chaurasia et al.

CCS Concepts: » Computing methodologies — Mixed / augmented reality; Image-based rendering.

Additional Key Words and Phrases: Mixed reality,augmented reality,image-based rendering,stereo reconstruc-
tion,video encoder,depth from motion vectors

ACM Reference Format:

Gaurav Chaurasia, Arthur Nieuwoudt, Alexandru-Eugen Ichim, Richard Szeliski, and Alexander Sorkine-
Hornung. 2020. Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality. Proc. ACM
Comput. Graph. Interact. Tech. 3, 1, Article 7 (May 2020), 17 pages. https://doi.org/10.1145/3384540

1 INTRODUCTION

Virtual Reality (VR) devices are becoming mainstream for gaming, media consumption, and produc-
tivity use-cases. This is evidenced by the growing ecosystem of content developers and providers,
e.g., Oculus Store!, SteamVR?, and Netflix for VR3. The greatest strength of these devices is that
they fully immerse the user into the content. This high level of immersion presents an important
challenge: products that provide a fully immersive VR experience must also provide ways to help
people remain aware of their surroundings and stay safe. In the absence of such functionality, the
user has to pause the VR content and take the headset off for any interaction with the real world.

We present a complete solution for real-time reconstruction and stereoscopic view synthesis of
the real-world environment, a feature commonly referred to as Passthrough, providing the user
with a live feed of the surroundings. We leverage images from stereo pairs of cameras typically
mounted on VR devices to enable positional tracking of the device pose using SLAM*.

For a correct display of the user’s surroundings, the cameras would have to be located at the
user’s eye positions. While this could be achieved with more complex optical systems, due to
various manufacturing constraints, the cameras are usually located at the outer surface of VR
headsets. Therefore, active reconstruction and warping of the camera images is required in order to
provide a plausible and perceptually comfortable passthrough experience for the user. Specifically,
our solution aims to provide the following:

(1) Plausible parallax without inducing motion sickness or visual discomfort.

(2) Low latency reconstruction and rendering without lag and stutter, while supporting dynamic
scenes with significant motion.

(3) Haptic trust: users should experience natural proprioception, i.e., be able to reach out and
grab an object or touch a surface.

Warping the images from the cameras to the user’s eye positions using static geometry like a
fixed plane or hemisphere without reconstructing 3D geometry is known to lead to instant motion
sickness. Low latency is necessary for a smooth visual experience; stuttering rendering or judder
can be disconcerting or disorienting to users, especially in fully immersive visual experiences where
they have no other frame of reference. For haptic trust, it is important to refresh the scene geometry
at a high enough rate to make individual geometry snapshots indiscernible to the eye, otherwise a
nearby moving object will be perceived at an outdated position.

Our work addresses all of these challenges by combining concepts from 3D stereo reconstruction
and image-based rendering (IBR). These fields are interestingly co-dependent. Stereo research has
often used image interpolation to demonstrate the quality of depth maps, and IBR has focused
on view synthesis from pre-captured scenes for which perfect depth maps cannot be computed

Thttps://www.oculus.com/experiences/quest/

Zhttps://store.steampowered.com/steamvr
3https://play.google.com/store/apps/details?id=com.netflix.android_vr&hl=en_US

4 All major VR headset brands currently provide such onboard stereo pairs, including Microsoft MR, Vive Pro, Google
Daydream, and Oculus Quest/Rift-S.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://doi.org/10.1145/3384540
https://www.oculus.com/experiences/quest/
https://store.steampowered.com/steamvr
https://play.google.com/store/apps/details?id=com.netflix.android_vr&hl=en_US

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:3

(see Sec. 2 for details). Our work is among the first where real-time stereo is combined with IBR
techniques for rendering live stereoscopic camera feed on a mobile, highly constrained platform.

In our application, we have to keep CPU utilization under 30 % of a single core and power
consumption under 200 mW, so that our system can run smoothly without adversely affecting VR
applications running in parallel, thermals, or battery health. Most sophisticated stereo techniques
are not applicable in our case because they require much higher CPU utilization or a powerful
GPU, to which we do not have access in our system. Therefore, we have developed an extremely
low power stereo algorithm and depend upon IBR techniques to compute a warped camera feed
that produces novel views at display rate, refreshes scene geometry at the rate images are captured
without dropping input frames, and provides plausible parallax to users. Our main technical and
system contributions include:

e an extremely low power stereo algorithm using consumer hardware (Sec. 3.1) and depth map
computation (Sec. 3.2) to render a wide field of view in stereo (Sec. 3.4),

e novel algorithms for reinforcing temporal stability in rendered views (Sec. 3.3),

e a multi-threaded system design that can render novel views at display rate, irrespective of
the underlying capture hardware (Sec. 4), and

e an analysis of end-to-end latency (Sec. 5) and reconstruction quality (Sec. 6) necessary for a
comfortable stereoscopic experience.

2 PREVIOUS WORK

Our system uses a combination of real-time, low compute 3D reconstruction and novel view
synthesis to warp the input images to the viewers’ eye locations. In this section, we review previous
work in these areas.

Real-time stereo reconstruction. Stereo matching is one of the most widely studied problems in
computer vision [Scharstein and Szeliski 2002], but only small subset of algorithms are suitable for
real-time implementation. An early example of such a system was the Stereo Machine of Kanade
et al. [1996], which was implemented in custom hardware. Algorithms that were developed to have
low computational complexity include semi-global matching [Hirschmiiller 2008; Hirschmiiller
et al. 2012] and HashMatch [Fanello et al. 2017], which can compute real-time active illumination
stereo on a GPU.

Valentin et al. [2018] use a combination of HashMatch and PatchMatch Stereo [Bleyer et al. 2011]
to establish semi-dense correspondence between successive images in a smartphone augmented
reality application. Like our system, they use consistency checks to eliminate unreliable matches,
and then use a bilateral solver [Barron and Poole 2016; Mazumdar et al. 2017] to interpolate these
correspondences to a full depth map, whereas we use a Laplace Solver [Di Martino and Facciolo
2018; Levin et al. 2004; Pérez et al. 2003]. Their paper also contains an extensive literature review.

Novel view synthesis. The study of view interpolation, which consists of warping rendered or
captured images to a novel view, has been a central topic in computer graphics since its introduction
by Chen and Williams [1993]. View interpolation was an early example of image-based rendering
(IBR) [Chen 1995; McMillan and Bishop 1995], which more generally studies how to render novel
views from potentially large collection of captured or rendered images [Shum et al. 2007][Szeliski
2010, Chapter 13]. This field is also often referred to as novel view synthesis.

A good early example of a complete system for real-time video view interpolation is the work of
Zitnick et al. [2004]. In this system, multiple synchronized video cameras were used to record a
dynamic scene from nearby viewpoints. The resulting videos were then processed off-line using a
segmentation-based stereo algorithm [Zitnick and Kang 2007] to produce multi-layer depth maps

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

7:4 Gaurav Chaurasia et al.

Fig. 2. Oculus Quest headset showing the position and orientation of cameras (blue) and the user’s viewing
direction (orange), and example images from the bottom two cameras. Due to the optical distortion and the
positioning of the cameras vs. the user’s eye positions, displaying the camera feed directly causes visual
discomfort and motion sickness.

for each frame of each video stream. A real-time desktop rendering system could then interpolate
in-between views to produce continuous viewpoint control as well as freeze-frame effects.

Since that time, this concept has been extended to more complex scenes and more dramatic view
transitions. Stich et al. [2008] use local homographies with discontinuities to interpolate between
cameras. Hornung and Kobbelt [2009] build 3D particle model for each view using multi-view stereo,
then combine these at rendering time. Ballan et al. [2010] use billboards and view-dependent textures
to interpolate between widely separated video streams, whereas Lipski et al. [2010] use dense
correspondences between frames to interpolate them. Chaurasia et al. [2011] develop techniques for
better handling of depth discontinuities (“silhouettes”), and Chaurasia et al. [2013] use super-pixel
segmentation and warping plus hole filling to produce high-quality novel view synthesis in the
presence of disocclusions.

More recently, Hedman et al. [2017] use the offline COLMAP system to do a sparse reconstruction,
then use multi-view stereo with an extra near-envelope to compute a depth map on a desktop
computer. Hedman and Kopf [2018] stitch depth maps from a dual-lens camera (iPhone) into a
multi-layer panorama. Holynski and Kopf [2018] use a combination of DSO SLAM for sparse
points, edge detection, and then edge-aware densification to compute high-quality depth maps on
a desktop computer. Finally, the ESPReSSo system of Nover et al. [2018] computes real-time depth
and supports viewpoint exploration on a desktop GPU using spacetime-stereo, i.e., 5 different IR
illuminators, local descriptors, and PatchMatch. These systems produce high-quality results, but
usually perform offline reconstruction and do real-time rendering on desktop computers.

The only system to date to demonstrate fully mobile depth computation (for augmented reality
occlusion masking) is the one developed by Valentin et al. [2018] mentioned above. Unfortunately,
their system is still too compute-heavy for our application, as we explain in the next section.

3 APPROACH

Our goal is to solve the following problem: warp the images captured from a stereo camera pair
on a VR headset in real-time to the user’s eye positions (Fig. 2). The synthesized views should
enable a fluid, immersive viewing experience, with plausible parallax. All this has to happen on
an extremely constrained platform: 30 % of a single mobile Qualcomm 835 CPU core at 200 mW
power consumption.

Our overall algorithm from camera images to rendered views is shown in Fig. 3. Each of the
algorithmic stages in the following subsections are designed to address the aforementioned criteria.
The dominant parameter of our approach is depth map resolution, for which we chose 70x70 to fit
the available GPU rasterization budget. Other parameters, e.g. weights in Sec. 3.2, 3.3, are tuned
manually; we observed these performed well on meshes 4-6 times the resolution used in this paper.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:5
Stereo
Undistort, HW video H264 Decods Motion Spatial
rectify encoder correspondences vectors consistency
3 Depth map Project to

) (et) completion ((Diggti ty) hemisphere]

Left Right Tracking Filtered point

view view poses cloud

Right stereo camera

Triangulation

Temporal
filtering

Fig. 3. Algorithmic overview. Starting from input images, we first rectify the images and feed them to the
hardware video encoder, from which we extract and filter motion vectors (Sec. 3.1). The resulting correspon-
dences are converted into depth values, to which we apply temporal refinement (Sec. 3.3). We project and
densify the points on to a wide field of view hemispherical grid centered at user’s position (Sec. 3.2). Finally
we create a mesh with associated texture coordinates corresponding to left and right input images, which is
then rendered to the left and right eye views (Sec. 3.4).

3.1 Low power stereo reconstruction

Our view synthesis starts with a sparse, low-power 3D reconstruction of the scene. Given a stereo
camera pair on a VR device, we compute stereo correspondences, which we then triangulate into 3D
points after a series of consistency checks. Traditional techniques such as dense semi-global stereo
matching [Hirschmiiller 2008] require a high CPU load even with vectorized implementations,
and are not feasible for our use case and platform constraints. In order to meet the power and
latency requirements, we exploit the video encoding hardware available on mobile SoCs to compute
correspondences or motion vectors (MVs). Mobile chipsets like our Qualcomm 835 have custom
silicon for video and audio encoding, which operate on a much lower power budget than CPUs:
80 mW compared to 1000 mW for a CPU.

Encoder stereo. Video encoders are designed to compute correspondences from frame ¢ to ¢t + 1 of
an input video sequence, and return these MVs in an encoded video stream at a very low power
budget. We re-purpose the encoder to compute motion vectors between the left and right images
of the stereo pair, instead of consecutive video frames. See Fig. 3 for an overview of our full 3D
reconstruction approach.

Sending the original input stereo pair to the video encoder does not provide useful results, since
encoders are usually biased towards small MVs via block-based motion estimation [Jakubowski
and Pastuszak 2013]. This reduces the ability to detect large displacements due to close-by objects.
Moreover, they operate on macro-blocks of size 8x8 [Ostermann et al. 2004], which we found to be
too coarse for our application.

To overcome these limitations, we create the input to the video encoder as a mixture of trans-
formations of the left and right rectified images. In this mosaic, we arrange multiple copies of the
input images to force correspondence estimation at an offset equal to half the macro-block size (i.e.,
4 pixels), so as to obtain sub-macro-block matching (Fig. 4). We also pre-shift the left subframe to
the left, which increases the probability of detecting large disparities. For example, a pre-shift of 4
pixels places a true 12 pixel original disparity at 8 pixels where it is more likely to be found by the
video encoder. We use multiple transformations with pre-shifts of 8 and 32 pixels to cover a wide
range of possible disparities. Secondly, we shift the macro-block grid by half the macro-block size.
Thus, if the encoder operates on a grid spaced by 8 pixels, we create 4 subframes with a shift of 4
pixels (Fig. 4). This allows us to compute MVs at a spacing of 4 pixels.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

7:6 Gaurav Chaurasia et al.

Left rectified input Right rectified input
with macroblock overlay with macroblock overlay
un |12 |13 | 14 n |12 |13 | 14

21 |22 23 24 21 | 22 23 24

Macroblock grid
enlarged for
illustrative purposes 31 32 33 34

31 | 32 33 3

®

4 |42 |43 | 44 21 |42 |43 | 44
122 (13 |14 'u|l12 | 13 |14 un (12 |13 lul12 |13 |14
]] 0
2 |23 |24 : 121 22 | 23 |2 21 |2 [121) 22 |23 |24

L L
2 |33 |3 :31 2 |33 |3 31 |32 |33 :31 2 |33 (3
42 |43 | 4a Va1| 22" | 43 (a4 a |42 |43 Var| a2 | a3 |aa
1

e e b]

1] 12] 13 [14

12 |13 1] yi1] 12 13 [14 1|12 1B I
22 |23 |24 : 21 22 | 23 |24 21 |22 |23 : : 21| 22 | 23 |24
o b
%2 |3 |4 ¢ gl |33 s s |3 |3, qufx |8 |u
w2 |43 | e : 21|42 | 43 [aa a2 | : 21| 42 | 43 [aa
First Video Encoder Input (Left) Second Video Encoder Input (Right)
" Subframe with disparity pre-adjustment ™1 Subframe with macroblock grid shift

-
- Subframe: disparity pre-adjustment + macroblock grid shift

Fig. 4. Video encoder input mosaic showing disparity pre-adjustment and macro-block grid shift. Disparity
pre-adjustment translates the left frame so that the video encoder can find large disparities at smaller
translation. The macro-block grid shift forces 4 motion vectors to be computed per macro-block instead of 1.

Fig. 5. Motion vectors computed by the encoder. Many of the correspondences are noisy and have to be
discarded via spatial consistency checks and temporal reinforcement.

In addition, encoders require a number of parameters to be tuned, such as bit rate or I-block
period, which are discussed in Sec. A. Ostermann et al. [2004] provide additional details on H.264
encoding.

Spatial consistency checks. Motion vectors from the encoder exhibit significant noise (Fig.5)
because they do not undergo regularization [Hirschmiller 2008]. For each point in the left image
for which we have a motion vector, we apply the spatial consistency checks listed in Table 4 in
the appendix. The most important is the left-right consistency check: we compute motion vector
for left to right image and also from right to left image with the same mosaics that we computed
earlier (Fig. 4). The motion vectors that pass all these consistency checks represent the final set

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:7

i S

Fig. 6. 180° field of view mesh centered at the user (left) with projection of 3D points from motion vector
stereo. We use 3D points (middle) as constraints in a Laplace equation (Sec. 3.2) to deform the unit distance
hemispherical mesh to the shape of the object (right, red).

of valid correspondences, which we turn in into 3D points via triangulation. As described later in
Sec. 3.3, we apply temporal filtering on this final set of points to reinforce stability.

Overall, the above approach produces 300-1200 3D points. The total run time is around 7 ms,
a large fraction of which is spent on the video encoder (Table 2). In comparison, a simple patch-
based stereo matching approach without any regularization required 10 ms on the CPU to yield a
comparable number of points after our best efforts to vectorize the computation.

3.2 From motion vector stereo to dense depth

The unstructured, relatively sparse set of 3D points from the stereo algorithm (Sec. 3.1) is insufficient
for high quality passthrough due to their non uniform distribution, noise, and outliers. In order
to perform high quality view synthesis for passthrough, we need to convert these 3D points into
a scene proxy that provides dense and stable per-pixel depth and covers a wide field-of-view to
account for fast user motion and head rotation. We solve this in a densification step by filtering
and propagating sparse depth.

Basic approach. We create a virtual hemisphere at unit distance around the user (Fig. 6, left).
The hemisphere is parameterized using Euler angles, representing it as a n X n (70x70 in our
experiments) grid of cells. Projecting 3D points onto the hemisphere results in depth values for
corresponding cells, effectively turning it into a wide field-of-view depth map.

In order to fill in empty regions on the hemispherical depth map, values from cells that have
associated depth have to be propagated across the grid. This is conceptually similar to heat diffusion
inspired solutions for propagating color strokes in order to colorize a grayscale image [Levin et al.
2004]. We therefore use the Laplacian operator to propagate depth information across the grid:

argmin||L-x||2+AZWi llx: — %1%, (1
x i

where L is the Laplacian operator, x is the grid of unknown inverse depth values for each cell of the
hemisphere arranged a column vector. w; is the sum of weights of all 3D from motion vector stereo
that project to the i-th cell in the hemisphere, and %; is the weighted mean of known inverse depth
values of all 3D points that project to the i-th cell in the hemisphere. Each 3D point computed from
the current stereo pair is added with a constant weight, set to 5 in our current implementation,
such that three points projecting into the i-th cell results in w; = 15.0. In Sec. 3.3 we describe how
this weighting scheme can be used to achieve improved temporal stability by adding in 3D points
from previous frames with lower weights. We initialize the border of the depth map to a plausible
fixed depth value of 2.0 m as Dirichlet border constraints. All the operations are performed on
inverse depth [Goesele et al. 2010].

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

7:8 Gaurav Chaurasia et al.

Table 1. Median number of iterations and wall clock time for Conjugate-Gradient (CG) and Jacobi over-
relaxation (JAC).

Relative CG JAC CG time JAC time
tolerance iterations iterations

1x107° 29 111 5.07ms 4.15ms
1x107° 16 37 2.8ms 1.3 ms
1x107* 6 7 1.05ms 0.25ms

Performance optimization. A straightforward implementation of this approach unfortunately
has prohibitive complexity, given our extremely tight compute and power budget. We therefore
evaluated various approaches and solve the problem as follows. Our equation is a simpler case of
the Poisson equation; hence research into high performance Poisson solvers for regular lattices
is applicable. We experimented with a direct Cholesky solver, an iterative Conjugate-Gradient
solver, and a vectorized implementation of iterative Jacobi over-relaxation [Di Martino and Facciolo
2018]. The direct solver was unsurprisingly the slowest. We aided the other two iterative solvers by
initializing them with the depth map from the previous frame. Conjugate-Gradient has a better
convergence rate than the Jacobi solver (Table 1); Hierarchical Basis Preconditioners [Szeliski 2006]
could further reduce the number of iterations. However, we found that vectorized Jacobi over-
relaxation makes better usage of memory locality; it was around 5X faster for time per iteration
(0.037 ms compared to 0.175ms for Conjugate-Gradient). In terms of overall time for 1 x 107
relative tolerance, Jacobi over-relaxation was 2X faster.

Note that we do not incorporate image edges as a constraint in Eq. (1). Levin et al. used pixel
differences as weights; later depth propagation approaches have incorporated either explicit silhou-
ette awareness [Chaurasia et al. 2013] or an edge-aware bilateral solver [Barron and Poole 2016;
Mazumdar et al. 2017; Valentin et al. 2018]. The reason is that, due to limited GPU availability on
a VR device, we restrict the resolution of the depth map 70x70. At such low resolutions, the size
of a grid cell in the hemisphere usually spans across multiple object boundaries, and adding edge
weights therefore did not add any value. If more CPU/GPU resources were available, incorporating
edge weights could produce a higher better fidelity of the depth map at object boundaries. However,
since the 3D points are warped over a short baseline from camera pose to eye pose, and we are
exploiting stereoscopic texturing during rendering, a plausible visual reproduction of (dis-)occlusion
artifacts can be achieved without edge constraints.

3.3 Temporal filtering

The depth map in the previous section is computed by the discretization and regularization of
sparse 3D points. If done independently per camera frame, temporal changes due to camera noise,
lighting conditions, or dynamic scene content cause considerable fluctuations in the point set.
These fluctuations make their way into the depth map and cause noticeable warping, bending, and
wiggling in the Passthrough rendering. We alleviate this by temporally filtering both the sparse 3D
points and the completed depth map. Joint spatio-temporal optimization [Davis et al. 2003; Richardt
et al. 2010] is not an option because it leads to prohibitively high CPU usage and power budget.
Our approach works as follows.

Temporal reinforcement of stereo points. Instead of directly using points from stereo to compute
the depth map, we compare them to a set of stereo points from past frames, which serves as a prior
set. Over time, this results in a set of stereo points that have been observed repeatedly.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:9

We identify three sets of 3D points in world coordinates:

o Sobv = {(pi,d;i)} observation: stereo points p; with disparity values from current images
(Sec. 3.1),

® Sprior = {(pi, wi)} prior : points from built over previous frame(s), each with a weight w;, and

o Sies = {pi} result: output points.

Here, disparity value for a 3D point is the difference between its projection in the right and left
rectified images at a particular instant. At any frame, we have the points S,y from stereo on current
images, and a prior Spjo; built over previous frames. Two points in Spjor and S,y are considered
matching if their projection in the current right image and the corresponding disparity values are
within 2 pixels. Using this definition, we compute all the points in Sjor Which have a match in
Soby. We increment the weight w; of the subset of Syior for which a match could be found in Sy
Analogously, we decrease the weights of those for which no match was found. The points in Sopy
which did not coincide with any point Spyjor are added to Sprior With weight 0, where “coincide”
means that points from Sprior and Syes project within 1 pixel of each other in the right rectified
image. All points in Spior whose weights are greater than 0 are additionally advanced to the result
set Sres for current instant, and those whose weights dropped below 0 are removed from Spyior.
Our algorithm can thus be summarized as:

Sres — Sprior N Sobw
Sprior — Sprior U Sobw
Sprior — Sprior \ Szero~

where S,er0 = {(pj, wj)lw; < O}.

We start with empty Sprior, Sobv and Sies. At the first frame, since the prior Spyior is empty, none
of the stereo points Sypy can be advanced to Sies, but they get added to Spyior. At the second frame,
the newly computed S,y can be compared against Sprior; the matching subset of Syrior is advanced
to Sres, and Sprior itself is augmented with Sy This achieves two important results:

e Outlier suppression. 3D points need to be observed in at least two frames to advance to
Sres and influence the depth map. This removes a vast majority of spurious points.

e Temporal history of prominent points. A point gets advanced to S, if its weight re-
mains greater than 0. Moreover, the weight of a point in Sjor gets repeatedly incremented
every time it is observed in Spy. This way point can be passed across longer temporal
windows. If they are not observed in one frame, they can still be used from the prior set.
If the point is out of field of view, its weight gets decremented automatically since it is no
longer in Spy. After a while, it is completely dropped when its weight drops below 0.

In practice, we restrict the maximum weight of points in Syior to 6 for nearby objects closer
than 1m. This ensures that for fast movements of nearby scene elements such as hands, stale
geometry that is older than 6 frames (equivalent to 0.2 s for camera feed) does not negatively affect
the rendering quality. For geometry further away, we keep the threshold at 16 (0.5 s of camera
feed).

Temporal smoothing of the depth map. The final depth map x; at time ¢ is computed by solving the
Laplace equation with stereo points as constraints (Sec. 3.2). Even though the previously described
temporal reinforcement suppresses most of the temporal outliers, some temporal instability is
still caused by the discretization of the 3D points to a low resolution depth map in a time varying
manner. We alleviate this by projecting the depth map x;_; from the previous frame to the current
headset pose T and using the resulting 3D points as additional constraints in the solver. Hence we

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

7:10 Gaurav Chaurasia et al.

replace
x; <« LaplaceSolver [S;es(t)],

from (Sec. 3.2) by
x; « LaplaceSolver [S,es(t) U T -x;_1].

This is inspired by Infinite Impulse Response (IIR) filters, wherein a signal at time ¢ is filtered with
input t and its own value at {t — 1, - -} to approximate a decaying filter over an infinite window.

In all our experiments, this was significantly more effective than caching stereo points from last
k < 10 frames and using them as constraints, because it allowed much longer temporal aggregation
with a fixed number of values to store and track. Caching stereo results from multiple frames
quickly led to a prohibitive increase in memory and CPU cycles to store, project and incorporate
the points as constraints.

Recall that in Eq. 1, we had used Laplacian constraints with weight 1.0 and 3D constraints with
weight 5.0, accumulated into the weight matrix W. Since we now have 3D constraints from stereo
points S;es(#) and from previous depth map x;_;, we specify different weights for these. We use
a standard weight of % for each point in Se(t). For points from x;_; projected into current
frame, we use a weight of 5.0 if that it was within one grid cell from the projection of stereo point
Stes(t — 1) in the previous frame’s depth map, else 0.0. We prioritize previous frame’s output 30
times more than current stereo points — this is important for strong temporal stabilization. As this
prioritization is decreased, temporal stabilization weakens.

3.4 Stereoscopic rendering

The final depth map values are sent to the GPU and rendered as a triangle strip. All transformations
are performed in a vertex shader to minimize CPU-GPU bandwidth. We project the mesh vertices
into the left and right input cameras to obtain individual left and right texture coordinates, which
are used to texture the mesh using the left/right camera for the left/right eye, respectively.

This view-dependent stereoscopic texturing has the advantage that each of left and right input
views are warped over a shorter baseline as compared to warping a single image to both eyes, as
well as preserving view-dependent illumination and parallax effects, resulting in an overall more
plausible rendering. Another advantage is that this fills up the entire 180° field of view around the
user; which would not be possible using the same image to texture the mesh for both eyes.

The caveat of this method is that occasionally, each eye views a different texture on the same
fragment of 3D geometry, which the visual system cannot merge. We observed that this is noticeable
only for objects around 30 cm; 3D reconstruction is also often inaccurate at such close ranges
(Fig. 9b).

4 SYSTEM ARCHITECTURE

Our system consists of a VR headset that has a stereo pair of cameras and is capable of computing
device pose in world coordinates at high precision, typically using a SLAM system.

We implemented our system on two threads: a render thread and a compute thread, see Fig. 7.
The render thread is triggered every time the display is refreshed. Inside the render loop, we get the
real-time device pose from the SLAM system. We poll the cameras for new images. If new images
are available, we first upload them to the GPU for rendering. If the compute thread is not currently
busy, we also copy the images locally for processing and signal the compute thread to wake up.
The compute thread generates a new depth map from images as described in Sec. 3. It uses double
buffered output: one of these buffers is for the compute thread to overwrite while the other is read
on the render thread. These buffers are swapped and marked fresh every time the compute thread
has a new output.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:11

Image
sensors

‘ Camera capture (30 Hz) |

| | | | I
-;;rm;less Poses (Images) CFrame buffer ready)
& = |
‘ Render (72 Hz) | | l]

} Compute (30 Hz) [H I[H D

Fig. 7. Multi-threaded system using two main threads, with an additional camera capture thread operating
synchronously at 30 Hz. The render thread triggers synchronously at 72 Hz. It copies the images when available,
and triggers and polls the compute thread for geometry, which it uses to compute texture coordinates. Finally
it uploads textures and attributes to the GPU and renders the mesh.

Back on the render thread, we query the compute thread for a new depth map. If available, it is
uploaded to the GPU; otherwise we retain the old depth values already in GPU memory. Every time
we either have a new image or new depth map, we recompute texture coordinates for the updated
mesh using the device pose at the time the images were captured. We observed that an error of
even 4 ms in capture timestamps was enough to cause visibly floating and lagging rendering. The
SLAM system must be capable of delivering device pose at such a high frame rate and also with
high accuracy.

An important consideration is to never block the render thread for a long (>4 ms) or non-
deterministic period. Therefore, we only perform the non-blocking fast operations on this thread
(Table 3) to fit well within the 14 ms between two successive display refresh events. We minimize
CPU-GPU bandwidth by only sending depth values to the GPU instead of 3D vertices; these depth
values are multiplied to unit bearing vectors (uploaded once to GPU) in the OpenGL vertex shader
to get 3D vertex coordinates.

5 PERFORMANCE

We deployed our system on the Oculus Quest VR headset, which has a mobile Qualcomm 835
processor. Quest devices have a downward facing grayscale stereo camera pair (Fig. 2) that operates
at 30 Hz. The display refresh rate is 72 Hz. It also has a SLAM system® for real-time head pose
estimation. We aggregated performance numbers over 10 000 h of usage in uncontrolled conditions.

The Qualcomm 835 CPU runs at 2.45 GHz. The execution times for all the stages are given in
Table 2 and 3. Our multi-threaded solution (Sec. 4) maintains a display rate of 72 Hz irrespective of
the time spent in the compute thread.

For our end-to-end multi-threaded system, the delay between image capture and the time when
the corresponding camera image is rendered is 49 ms. The delay between the image capture and
the rendering corresponding 3D geometry is 62 ms. These take into account the delay between
camera and display events, as well as thread scheduling, in addition to the computation time. We
call these photon-to-texture and photon-to-geometry latency, respectively. These determine the
responsiveness of our system. We measure these using the mid point of the cameras’ exposure
window as the start time, and the time when texture/geometry are rendered in an OpenGL context

Shttps://ai.facebook.com/blog/powered-by-ai-oculus-insight/

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://ai.facebook.com/blog/powered-by-ai-oculus-insight/

7:12 Gaurav Chaurasia et al.

Table 2. CPU execution time for various stages in the compute thread. TCPU is idle during motion vector
computation on the video encoder.

Stereo computation Depth map completion
Rectification 0.6 ms System matrix setup 0.8 ms
Motion vectors’ 2.8 ms Solver 0.7 ms
Decoding 1.7ms

Spatial checks 0.5ms

Temporal filtering 1.0 ms

Total < 9ms

Table 3. CPU execution time for the render thread.

Render thread
Copy images 0.3ms
Compute texture coords 2.2ms
Send textures to GPU 0.5 ms

Send depth values to GPU 0.1 ms
Send texture coords to GPU 0.2 ms

Total < 4ms

as end time. Getting photon-to-texture latency as close as possible to 33 ms (corresponding to 30 Hz)
is important; a latency higher than around 100 ms can cause noticeable judder. In our experiments,
photon-to-geometry latency requirements seemed less critical; some of our early prototypes had
this latency above 100 ms without too much additional discomfort.

We also implemented and tested our approach on the PC-based Oculus Rift-S®, which has a
different camera arrangement, with similar results.

6 EVALUATION

We evaluate the quality of the described system from two main perspectives: a quantitative compar-
ison of the depth estimation to high quality reference depth maps from laser scans, and an ablation
study on temporal coherence, which is one of the key factors in perceived rendering quality. Depth
maps from laser scans may have small errors, hence we refer to them as pseudo ground truth.

6.1 Depth Estimation

We evaluated our depth estimation on 450 datasets, amounting to 9 hours of recordings, on Quest
headsets in a variety of indoor scenes. We captured egocentric datasets while walking around
indoor scenes, performing tasks like game play, watching videos etc. We evaluate two key metrics
that influence the final rendering:

e Absolute depth error. This is the difference in pseudo ground truth depth and calculated
depth of a stereo point. We aggregate this per-point by depth ranges: we group depth
measurements are grouped into a histogram with an interval width of 0.25 m and plot the
depth error of each histogram bucket. This gives depth error as a function of absolute depth
value.

Shttps://www.oculus.com/rift-s/

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://www.oculus.com/rift-s/

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:13

e Image coverage. This is the percentage of the input image where 3D reconstruction was
successful. We divide the image into blocks of 20x20 and count the number of blocks that have
at least one stereo point. Sparse coverage implies parts of the scene were not reconstructed
and parallax will likely be poor for rendering such regions. Naturally, higher coverage can be
expected to include 3D points with high depth errors as well. Hence, we plot this metric as a
function of maximum allowed depth error.

Before we describe the results, we outline the process for acquiring pseudo ground truth depth
maps.

Fig. 8. Datasets. Input view (left) and corresponding pseudo ground truth depth map from a laser scan (right).

Pseudo ground truth depth maps. We first select a static scene configuration. We capture multiple
high-precision laser scans and photographs of the scenes. The scans are stitched together to form a
detailed textured mesh. Next, we use VR devices to record egocentric videos in the pre-scanned
scene. We also capture precise per-frame pose, tracking the headset with an OptiTrack system’.
We align the laser scan and the device poses captured by OptiTrack using physical beacons that
can be identified uniquely in both laser scans and cameras. After registration, we have the laser
scans, camera trajectories and the corresponding videos in the same coordinate frame. Finally, we
generate pseudo ground truth depth maps for each video frame by rendering the textured mesh
from the device’s camera viewpoint.

Absolute depth error. Fig. 9b shows that error increases steadily with absolute depth; it is between
5 cm-10 cm for most of the scene content. An important contribution of our work is highlighting
that this level of accuracy can be expected to give comfortable visual experience. Note the higher
errors at depths closer than 1 m. This is because our stereo algorithm is biased towards smaller
disparities (Sec. 3.1). Improving reconstruction of close-by objects is one of our focus points for
future work.

Image coverage. Fig. 9a shows that irrespective of the depth accuracy threshold, the coverage
is constant. That means that our stereo algorithm produces points whose accuracy is uniformly
distributed, and that the approach is not biased towards any particular accuracy limit. This is
important for productization: we can set a maximum limit, e.g. 2000, 10 000 etc., points per-frame
and expect the same accuracy distribution. This allows us to design downstream heuristics like
depth map completion without overfitting to heuristics in the stereo algorithm. Fig. 9d shows the
average number of points generated per frame for each depth range, with our current settings.

"https://www.optitrack.com/

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://www.optitrack.com/

7:14 Gaurav Chaurasia et al.

Image Coverage
© 9 9 P50 Errors
3 o8
8 0 — with_temporal filtering
é 3 e without_temporal_filtering
@ E o
Q =
[S °
o =
& w 0 o
o 02
Q 0.1 /
(&)
Depth error threshold [m] Depth [m]
(a) (b)
P90 Errors Point count distribution per frame
— with_temporal filtering — with_temporal filtering
Ls without_temporal_filtering ~ ,_ * without_temporal_filtering

— c

E 3w

[o— o

2 £

- 8

05 1 15 2 25 3 35 4 0s N s 25 5 3 4

Depth [m] Depth [m]

(© ()

Fig. 9. Evaluation for depth estimation. (a) Image coverage (y) as a function of maximum allowed depth error
(x) in meters. (b) Median depth error (y) as a function of depth (x) with and without temporal reinforcement.
(c) 90th percentile depth error (y) as a function of depth (x); temporal reinforcement causes this to drop
indicating significantly fewer outliers. (d) Point count as a function of depth (x); temporal reinforcement
reuses points from multiple previous frames without incurring outliers.

Effect of temporal reinforcement of stereo points. This step (Sec. 3.3) does not change the median
depth accuracy (Fig. 9b), but 90" percentile errors drop significantly (Fig. 9c), which proves the
efficacy of this step in removing depth outliers. This is important since spurious 3D points appearing
and disappearing across time leads to deformed structures in the rendered result. Moreover, number
of healthy 3D points in each frame is also higher (Fig. 9d), since this heuristic allows us to reuse
points from previous frames.

Effect of temporal constraints on depth map completion. We demonstrate this on two live recordings.
The recording without temporal constraints shows high frequency wiggling. This is because the
3D points are discretized on the lower resolution depth map grid (Sec. 3.2). This is alleviated when
we add temporal constraints in the Laplace solver. Please refer to accompanying video for this
comparison.

7 LIMITATIONS

The most important limitation of our approach is that the mesh can be inaccurate for nearby
objects and does not align with object boundaries, as the depth estimation around 30 cm becomes
inaccurate (Fig. 9b), and correspondences from the video encoder are on a fixed grid of macro-blocks
and get discarded when ending up on textureless image regions (Sec. 3.1). This can cause object
boundaries to occasionally wobble and limit stereoscopic viewing comfort for very close-by objects
(also explained in Sec. 3.4). This can also lead to occlusion artifacts when used in an augmented

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:15

reality context to place virtual objects. We have explored efficient CPU based stereo to alleviate
this. Moreover, hardware vendors are starting to provide hardware accelerated correspondence
estimation®. These would still not be as high quality as SGM [Hirschmiiller 2008], but at least
provide correspondences in each scene object, which, when combined with an edge aware solver
(instead of Sec. 3.2), should be able to capture object boundaries in the depth map.

8 CONCLUSION

We have presented a real-time system to reconstruct coarse 3D geometry and display realistic
renderings of the real world captured from cameras that do not coincide with user’s eyes. To this
end, we adapted a number of well known techniques in computer vision and graphics to achieve a
delicate balance between resource consumption, 3D accuracy and visual fidelity so as to maximize
user experience. Our work demonstrates how to build basic environment sensing ability into the
current generation of VR headsets.

Future work. VR headsets offer a great opportunity to push the boundary of real-time scene
understanding. In this work, we focused on 3D reconstruction and view synthesis to allow a
VR user to become aware of their surroundings. We are currently investigating the effect of 3D
reconstruction accuracy on visual perception and how to achieve higher haptic trust and visual
fidelity. In the future, we will apply environment sensing technologies such as object detection and
recognition to not only enhance safety in VR, but to also explore user experiences that eventually
blur the boundary between the real and virtual world.

ACKNOWLEDGMENTS

Developing this system has been a significant effort across many teams and disciplines. The authors
would like to thank all team members and the Facebook XR Tech management for their support.
Special thanks to Alessia Marra for providing explanatory diagrams.

REFERENCES

Luca Ballan, Gabriel J. Brostow, Jens Puwein, and Marc Pollefeys. 2010. Unstructured Video-Based Rendering: Interactive
Exploration of Casually Captured Videos. ACM Trans. Graph. (Proc. SSGGRAPH) 29, Article 87 (July 2010), 11 pages. Issue
4. https://doi.org/10.1145/1778765.1778824

Jonathan T. Barron and Ben Poole. 2016. The Fast Bilateral Solver. In The European Conference on Computer Vision (ECCV).

Michael Bleyer, Christoph Rhemann, and Carsten Rother. 2011. PatchMatch Stereo - Stereo Matching with Slanted Support
Windows. In British Machine Vision Conference (BMVC 2011).

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis. 2013. Depth Synthesis and Local
Warps for Plausible Image-based Navigation. ACM Trans. Graph. 32, 3, Article 30 (June 2013), 12 pages. https:
//doi.org/10.1145/2487228.2487238

Gaurav Chaurasia, Olga Sorkine, and George Drettakis. 2011. Silhouette-Aware Warping for Image-Based Rendering.
Comput. Graph. Forum (Proc. EGSR) 30, 4 (2011), 1223-1232. https://doi.org/10.1111/j.1467-8659.2011.01981.x

S. Chen and L. Williams. 1993. View Interpolation for Image Synthesis. In ACM SIGGRAPH 1993 Conference Proceedings.
279-288.

S. E. Chen. 1995. QuickTime VR - An Image-Based Approach to Virtual Environment Navigation. In ACM SIGGRAPH 1995
Conference Proceedings. 29-38.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz. 2003. Spacetime stereo: a unifying framework for depth from triangulation.
In CVPR, Vol. 2. 11-359. https://doi.org/10.1109/CVPR.2003.1211491

Matias Di Martino and Gabriele Facciolo. 2018. An Analysis and Implementation of Multigrid Poisson Solvers With Verified
Linear Complexity. Image Processing On Line 8 (2018), 192-218. https://doi.org/10.5201/ipol.2018.228

Sean Ryan Fanello, Julien Valentin, Adarsh Kowdle, Christoph Rhemann, Vladimir Tankovich, Carlo Ciliberto, Philip
Davidson, and Shahram Izadi. 2017. Low Compute and Fully Parallel Computer Vision With HashMatch. In The IEEE
International Conference on Computer Vision (ICCV).

8https://developer.qualcomm.com/software/fastcv-sdk

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://doi.org/10.1145/1778765.1778824
https://doi.org/10.1145/2487228.2487238
https://doi.org/10.1145/2487228.2487238
https://doi.org/10.1111/j.1467-8659.2011.01981.x
https://doi.org/10.1109/CVPR.2003.1211491
https://doi.org/10.5201/ipol.2018.228
https://developer.qualcomm.com/software/fastcv-sdk

7:16 Gaurav Chaurasia et al.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny Klowsky, Drew Steedly, and Richard
Szeliski. 2010. Ambient Point Clouds for View Interpolation. ACM Trans. Graph. 29, 4, Article 95 (July 2010), 6 pages.
https://doi.org/10.1145/1778765.1778832

Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D Photography. ACM Trans. Graph. 36, 6,
Article 234 (Nov. 2017), 15 pages. https://doi.org/10.1145/3130800.3130828

Peter Hedman and Johannes Kopf. 2018. Instant 3D Photography. ACM Trans. Graph. 37, 4, Article 101 (July 2018), 12 pages.
https://doi.org/10.1145/3197517.3201384

Heiko Hirschmiiller. 2008. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern
Analysis and Machine Intelligence 30, 2 (February 2008), 328-341.

H. Hirschmiiller, M. Buder, and I. Ernst. 2012. Memory Efficient Semi-Global Matching. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences I3 (Jul 2012), 371-376. https://doi.org/10.5194/isprsannals-I-
3-371-2012

Aleksander Holynski and Johannes Kopf. 2018. Fast Depth Densification for Occlusion-aware Augmented Reality. ACM
Trans. Graph. 37, 6, Article 194 (Dec. 2018), 11 pages. https://doi.org/10.1145/3272127.3275083

Alexander Hornung and Leif Kobbelt. 2009. Interactive Pixel-Accurate Free Viewpoint Rendering from Images with
Silhouette Aware Sampling. Comput. Graph. Forum 28, 8 (2009), 2090-2103. https://doi.org/10.1111/j.1467-
8659.2009.01416.x

M. Jakubowski and G. Pastuszak. 2013. Block-based motion estimation algorithms — a survey. Opto-Electronics Review 21, 1
(01 Mar 2013), 86-102. https://doi.org/10.2478/s11772-013-0071-0

Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano, and Masaya Tanaka. 1996. A Stereo Machine for Video-rate
Dense Depth Mapping and Its New Applications. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’96). 196-202.

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. In Proc. SSGGRAPH. 689-694. https:
//doi.org/10.1145/1186562.1015780

Christian Lipski, Christian Linz, Kai Berger, Anita Sellent, and Marcus Magnor. 2010. Virtual Video Camera: Image-
Based Viewpoint Navigation Through Space and Time. Comput. Graph. Forum 29, 8 (2010), 2555-2568. https:
//doi.org/10.1111/j.1467-8659.2010.01824.x

Amrita Mazumdar, Armin Alaghi, Jonathan T Barron, David Gallup, Luis Ceze, Mark Oskin, and Steven M Seitz. 2017. A
hardware-friendly bilateral solver for real-time virtual reality video. In Proceedings of High Performance Graphics. ACM,
13.

L. McMillan and G. Bishop. 1995. Plenoptic Modeling: An Image-Based Rendering System. In ACM SIGGRAPH 1995
Conference Proceedings. 39-46.

Harris Nover, Supreeth Achar, and Dan Goldman. 2018. ESPReSSo: Efficient Slanted PatchMatch for Real-time Spacetime
Stereo. In International Conference on 3D Vision.

J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi. 2004. Video coding
with H.264/AVC: tools, performance, and complexity. IEEE Circuits and Systems Magazine 4, 1 (2004), 7-28. https:
//doi.org/10.1109/MCAS.2004.1286980

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM Trans. Graph. (Proc. SSGGRAPH) 22, 3
(July 2003), 313-318. https://doi.org/10.1145/882262.882269

Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and Neil A. Dodgson. 2010. Real-time Spatiotemporal Stereo
Matching Using the Dual-Cross-Bilateral Grid. In Proceedings of the European Conference on Computer Vision (ECCV)
(Lecture Notes in Computer Science), Vol. 6313. 510-523. https://doi.org/10.1007/978-3-642-15558-1_37

Daniel Scharstein and Richard Szeliski. 2002. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence
Algorithms. International Journal of Computer Vision 47, 1 (May 2002), 7-42. http://vision.middlebury.edu/stereo/

H.-Y.. Shum, S.-C. Chan, and S. B. Kang. 2007. Image-Based Rendering. Springer, New York, NY.

Timo Stich, Christian Linz, Georgia Albuquerque, and Marcus Magnor. 2008. View and Time Interpolation in Image Space.
Comput. Graph. Forum 27,7 (2008), 1781-1787.

Richard Szeliski. 2006. Locally Adapted Hierarchical Basis Preconditioning. ACM Trans. Graph. 25, 3 (July 2006), 1135-1143.
https://doi.org/10.1145/1141911.1142005

Richard Szeliski. 2010. Computer Vision: Algorithms and Applications (1st ed.). Springer, New York. http://szeliski.
org/Book

Julien Valentin, Adarsh Kowdle, Jonathan T. Barron, Neal Wadhwa, Max Dzitsiuk, Michael Schoenberg, Vivek Verma,
Ambrus Csaszar, Eric Turner, Ivan Dryanovski, Joao Afonso, Jose Pascoal, Konstantine Tsotsos, Mira Leung, Mirko
Schmidt, Onur Guleryuz, Sameh Khamis, Vladimir Tankovitch, Sean Fanello, Shahram Izadi, and Christoph Rhemann.
2018. Depth from Motion for Smartphone AR. ACM Trans. Graph. 37, 6, Article 193 (Dec. 2018), 19 pages. https:
//doi.org/10.1145/3272127.3275041

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://doi.org/10.1145/1778765.1778832
https://doi.org/10.1145/3130800.3130828
https://doi.org/10.1145/3197517.3201384
https://doi.org/10.5194/isprsannals-I-3-371-2012
https://doi.org/10.5194/isprsannals-I-3-371-2012
https://doi.org/10.1145/3272127.3275083
https://doi.org/10.1111/j.1467-8659.2009.01416.x
https://doi.org/10.1111/j.1467-8659.2009.01416.x
https://doi.org/10.2478/s11772-013-0071-0
https://doi.org/10.1145/1186562.1015780
https://doi.org/10.1145/1186562.1015780
https://doi.org/10.1111/j.1467-8659.2010.01824.x
https://doi.org/10.1111/j.1467-8659.2010.01824.x
https://doi.org/10.1109/MCAS.2004.1286980
https://doi.org/10.1109/MCAS.2004.1286980
https://doi.org/10.1145/882262.882269
https://doi.org/10.1007/978-3-642-15558-1_37
http://vision.middlebury.edu/stereo/
https://doi.org/10.1145/1141911.1142005
http://szeliski.org/Book
http://szeliski.org/Book
https://doi.org/10.1145/3272127.3275041
https://doi.org/10.1145/3272127.3275041

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality 7:17

Table 4. Spatial consistency checks applied on motion vectors from the video encoder, from top of bottom.
Failure rates reflects percentage of candidate motion vectors input to that stage, not the total motion vectors.

Motion vec- Description Failure criteria Failure
tor filter %
Encoder Failure to find a correspondence. Internal to video encoder. 54 %
I-block

Inter- Motion vectors must be contained within Motion vector endpoint is outside 1%
subframe a given subframe. the subframe.

motion

vectors

Left / right Motion vectors from left to right (L — R) x component of L — R motion vec- 22%

consistency must correspond to those from right to left tor differs from matching R — L
(R—L). motion vector by more than 1 pixel.

Epipolar con- Motion vectors must be horizontal. Absolute value of y component of 12%

sistency motion vector is greater than 1 pixel.

Parabola fit The parabola fit on ZSSD error values be- No local minimum for parabola fit 18%
or subpixel tween the motion vector start point in the within [—-1, 1] pixel of the motion
refinement right image and the motion vector end vector, or parabola fit with second

point [—1, 1] in the left image. The patch order term below a given threshold.

size corresponds to macro-block size.

C. Lawrence Zitnick and Sing Bing Kang. 2007. Stereo for Image-Based Rendering using Image Over-Segmentation. Int. §.
Comput. Vision 75, 1 (Oct. 2007), 49-65. https://doi.org/10.1007/s11263-006-0018-8

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski. 2004. High-quality video
view interpolation using a layered representation. ACM Transactions on Graphics (Proc. SGGRAPH 2004) 23, 3 (August
2004), 600—-608.

A VIDEO ENCODER PARAMETERS

The most important video encoder parameters we tuned to improve 3D reconstruction are listed
below. Ostermann et al. give a detailed discussion of parameters for H.264 encoders.

e Subframes vs. sending multiple frames. The HW video encoder latency consists of both a
fixed overhead and a resolution-dependent overhead. For VGA resolution, the fixed overhead
is significantly higher, and therefore, it is more efficient to send a single input with subframes
to the encoder. The “MV crosstalk” between sub-frames is relatively low (1 % of the MVs) and
can be filtered from the output.

e Encoder bit rate. Higher bitrate leads to fewer higher quality MVs and higher CPU decoding
time. Variable bitrate produced higher quality MVs vs. constant bitrate.

e I-block period. The approach sends an I-P-P frame (left-right-left) sequence to the encoder
for each input stereo pair. The P-frames are constrained such that they can only refer to the
preceding frame. For longer I-block periods (e.g. (I-P-P)-(P-P-P)-(I-...)), we observed significant
increases in outliers and temporal flicker.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 7. Publication date: May 2020.

https://doi.org/10.1007/s11263-006-0018-8

	Abstract
	1 Introduction
	2 Previous work
	3 Approach
	3.1 Low power stereo reconstruction
	3.2 From motion vector stereo to dense depth
	3.3 Temporal filtering
	3.4 Stereoscopic rendering

	4 System architecture
	5 Performance
	6 Evaluation
	6.1 Depth Estimation

	7 Limitations
	8 Conclusion
	Acknowledgments
	References
	A Video encoder parameters

