
RGB-D Handheld Mapping and Modeling

Alexandru - Eugen Ichim

École Polytechnique Fédérale de Lausanne

School of Computer and Communications

Master of Science

Supervisors:

Prof. Dr. Mark Pauly

Dr. Radu Rusu

Lausanne, EPFL, 2013

The voyage of discovery is not in seeking new landscapes but in having new eyes.
– Marcel Proust

To my parents. . .

Contents
List of figures vi

List of tables ix

Introduction 1

1 Introduction 1
1.1 Depth-only Registration . 2

1.2 Similar Systems . 3

1.3 Pipeline Overview and Thesis Organization . 6

1.4 Datasets . 7

1.5 Open Source Software . 8

1.6 Contributions . 10

2 Point Cloud Registration 11
2.1 Introduction and Related Work . 11

2.2 Point Cloud Pre-processing . 12

2.2.1 Filtering . 12

2.2.2 Sampling . 15

2.2.3 Normal Estimation . 21

2.3 Correspondence Estimation and Rejection . 24

2.3.1 Correspondence Estimation . 24

2.3.2 Correspondence Rejection . 27

2.4 Transformation Estimation and Pair Weighting 36

2.5 Stopping Criteria and Transformation Validation 38

2.6 Conclusion . 45

3 Graph optimization 47
3.1 Introduction and Related Work . 47

3.2 Pose Graphs for Kinect Mapping . 51

3.2.1 Incremental Construction of the Pose Graph 51

3.2.2 Loop Closures . 52

3.2.3 Edge Weights . 53

3.3 Optimizations . 55

v

Contents

3.4 Global ICP . 56
3.5 Conclusion . 60

4 Surface Reconstruction and Texture Mapping 61
4.1 Introduction and Related Work . 61
4.2 Vertex Coloring . 64
4.3 UV Maps . 65
4.4 Color Transfer . 67

4.4.1 Perspectively Correct Texture Mapping . 69
4.4.2 Heuristics for Weighting the Per-texel Contributions 69

4.5 Conclusion . 71

5 Geometric Features, Planes 73
5.1 Introduction . 73
5.2 Plane Extraction . 75
5.3 Plane Tracking . 77
5.4 Planes as Landmarks in Graph Optimization . 79
5.5 Frame to Frame Alignment using Planes . 81

5.5.1 RANSAC and Rendered Depth Maps . 82
5.5.2 Joint Point and Plane Optimization . 85
5.5.3 Plane-Constrained ICP . 88

5.6 Conclusion . 89

6 Results, Benchmarks and Future Work 91
6.1 TUM Datasets Benchmarks . 91
6.2 Our own datasets . 91
6.3 Future Work . 100
6.4 Conclusions . 100

Bibliography 107

vi

List of Figures
1.1 Typical jumps in the exposure settings of RGB-D cameras 2

1.2 Augmented reality with Kinect Fusion. 4

1.3 Kinect Fusion volume limitation . 4

1.4 The proposed pipeline overview. 6

1.5 Sample datasets . 7

1.6 Blensor interface . 8

1.7 PCL dependency graph . 9

2.1 Kinect noise . 13

2.2 Filtering results . 16

2.3 Sample scans for condition number . 19

2.4 Point cloud sampling . 20

2.5 Border problems with computing normals from integral images 24

2.6 Comparison of normal quality at different depths 25

2.7 Correspondence rejection methods . 29

2.8 Accumulated drift with various correspondence rejection pipelines 30

2.9 Three pairs of clouds to be used for evaluation . 32

2.10 Number of iterations vs MSE for correspondence pipelines - pair 1 33

2.11 Number of iterations vs MSE for correspondence pipelines - pair 2 34

2.12 Number of iterations vs MSE for correspondence pipelines - pair 3 35

2.13 Number of iterations vs MSE for various transformation estimation methods -
pair 1 . 39

2.14 Number of iterations vs MSE for various transformation estimation methods -
pair 2 . 40

2.15 Number of iterations vs MSE for various transformation estimation methods -
pair 3 . 41

2.16 Number of iterations vs MSE for weighted and un-weighted transformation
estimation methods . 42

2.17 Example scene with a wide range of depths . 42

2.18 Graphical explanation of each of the ICP stopping criteria that we employed in
our application. 44

2.19 Transformation validation concept sketch . 46

vii

List of Figures

3.1 Incremental registration drift . 48

3.2 Drift in the pose graph and how it can be corrected 49

3.3 Graph representation of the example objective function in Equation 3.2. 49

3.4 The effect of loop closure on the graph optimizer and the resulting improved map. 54

3.5 Error accumulation of incremental registration as compared to graph-based
optimization with loop closures. 54

3.6 Graph fragmentation when registration is not possible 57

3.7 1-dimensional loop closure example . 58

3.8 Example model before and after ICP . 59

4.1 Meshing with the Poisson surface reconstruction algorithm 63

4.2 Gingerbread house - before and after coloring the mesh 64

4.3 Vertex coloring on: (a) a mesh with a large number of faces; (b) its low-poly version 65

4.4 (a) Trivial per-triangle UV map; (b) Space optimizing trivial per-triangle UV map;
(c) Automatic mapping offered by Autodesk Maya 66

4.5 (a) The Gingerbread house mesh where color bleeding between triangles can
be seen due to the trivial per-triangle UV mapping; (b) Issue alleviated by the
automatic UV mapping. 66

4.6 Perspectively correct texture mapping: (a) flat; (b) texture mapping using affine
transformation; (c) texture mapping using perspective transformation. 69

4.7 (a) Affine texturing and (b) Perspectively correct on the Gingerbread house dataset. 69

4.8 Texture mapping with and without averaging . 70

5.1 High level of noise in the Kinect data, making it impossible to reliably fit cylinders
in the scans. 74

5.2 Extracting planes by region growing - parametrization issues 76

5.3 Clustering plane inliers . 77

5.4 Planar polygon contours . 78

5.5 Plane extraction - RANSAC vs region growing . 79

5.6 Registration pipeline with and without planar features 81

5.7 Top-down view of a room with and without plane-to-plane constraints 82

5.8 Complete graph architecture for mapping using plane features 83

5.9 Our reconstruction pipeline with and without camera-plane constraints 83

5.10 Low resolution plane renderings for plane RANSAC 85

5.11 Two examples of frames registered with plane RANSAC 87

5.12 Example where the planes RANSAC . 88

6.1 Screenshots of TUM maps and tracks - 1 . 93

6.2 Screenshots of TUM maps and tracks - 2 . 94

6.3 The improvements using planar features in the pipeline 95

6.4 Meshes of TUM datasets. 96

6.5 Mesh results of our own datasets. 97

6.6 Mesh results of our own datasets. 98

viii

List of Figures

6.7 Mesh results of our own datasets. 99

ix

List of Tables
2.1 RMSE for filtering . 15
2.2 Condition numbers . 20
2.3 Running times for different nearest neighbor search algorithms 27
2.4 Timing for the six correspondence filtering pipelines and the optimization. . . 33

3.1 RMS errors when before and after global ICP. 59

5.1 Joint point and plane optimization benchmark. 88

6.1 The RMS ATE of our system against [SB12]. 92
6.2 The RMS RPE of our system against [EHE§12]. 92
6.3 The behavior of our system when faced with non-static scenes. 92

xi

List of terms

Below is a list of terms and acronyms that will be used extensively throughout this document.

• Point cloud - a set of vertices in 3D space, defined by their X, Y, Z coordinates; additional
properties such as normal direction, curvature, colors, or per-point feature descriptors
can be attached to each point.

• Point cloud alignment - the process of bringing together two point sets P and Q such
that the error (under various error metrics) between corresponding point pairs (p, q) is
minimized.

• Point cloud registration - see point cloud alignment.

• Pixel - also called pel or picture element, is the smallest element in a sensor array or
display, an addresable sample of the continous function captured by the sensor or
displayed by the screen.

• Dexel - instead of associating gray or color values to a pixel, certain applications need
to include depth information in a raster, thus introducing the concept of a depth pixel.

• Moving Least Squares (MLS) - an approach for reconstructing continuous functions
from unorganized samples [Lev98], used in Computer Vision for inferring continuous
surfaces from discrete scanned vertices.

• Random Sample Consensus (RANSAC) - a non-deterministic iterative algorithm for
estimating the parameters of a mathematical model from a set of samples containing
outliers [Pul99].

• Iterative Closest Point (ICP) - an algorithm for registering two point clouds, first intro-
duced by [BM92], which has been heavily optimized throughout the years [RL01].

• Pose graph - a graph representation of the track of a robot in space. The nodes are the
poses of the robot at different instances in time, connected together by edges which
represent noisy measurements of relative transformations between the poses. The
graph is translated into an error function that is minimized during a process called
graph optimization.

xiii

List of Tables

• Simultaneous Localization and Mapping (SLAM) - this problem requires a robot that
is placed at an unknown location in an unknown environment to be able to build a map,
to localize itself in the map and update it in the process.

• Mean squared error (MSE) - estimator to compute the error between two sets of cor-
responding values, which corresponds to the expected value of the squared error loss:

MSE(A,B) = 1
n

nX

i=1
(ai °bi)2 (1)

• Root mean squared error (RMSE) - estimator similar to MSE, only that it has the same
unit of measurement as the initial quantity. It is equivalent to the standard deviation for
unbiased estimators:

RMSE(A,B) =
p

MSE(A,B) =
s

1
n

nX

i=1
(ai °bi)2 (2)

xiv

1 Introduction

In the early days of robotics, perception was consistently confounded with artificial intel-
ligence. People thought that a robot is smart if it can correctly perceive the world around
it and adapt its actions to the way the environment is structured and evolves. In order to
enable mobility, robots need a good indication of how the world around them looks like, and,
depending on the task to be performed, the complexity and coverage of the state of the world
varies from simple one-dimensional signals to full-fledged 3D models with information such
as color, surface orientation and semantic information of what the seen objects are, areas
where the robot can access safely etc.

As such, one of the most important and sought for applications in computer vision is Simulta-
neous Localization and Mapping (SLAM). The two concepts are close to a chicken-and-egg
situation, as the mobile operator equipped with a camera in an unknown environment has to
map the scene, but can not do so before localizing itself, and good localization needs a map
in the first place. Mapping is needed especially in robotics to aid in tasks ranging from 2D
navigation to object modeling and planning for complex manipulation tasks. The problem of
2D SLAM has been considered solved for some time, and there have been multiple systems
published with code available as open source [QCG§09]. Adding another degree of freedom
does not make the naive adoption of the successful techniques from 2D a viable solution.

Outside the robotics field, mapping can be transposed to a mean of digital communication,
allowing people to capture, analyze and share models of their environments, be it for scientific,
engineering or entertainment purposes. Downscaling the problem leads to object modeling,
a concept that opens a new space of possibilities with applications in computer-generated
animations, gaming and 3D printing.

Until recently, researchers and engineers focused their attention mostly on industrial applica-
tions of 3D perception, as the hardware necessary for good sensing was not financially viable
for the mass market. Stereo cameras and structure from motion were the most accessible
options to provide end-users with 3D capturing and processing capabilities. Both options
have disadvantages that proved fatal for making such systems popular (high computation

1

Chapter 1. Introduction

Figure 1.1: Typical jumps in the exposure settings of RGB-D cameras - the color of the wall
changes from white to pitch black in just a few frames.

costs, cumbersome hardware, relatively low robustness etc.). Microsoft introduced the Kinect
as a controller-free gaming interface, but due to its low price and both 3D and 2D capabilities it
became very popular amongst the computer vision and robotics communities. This launched
the idea that 3D can be accessible and caused an acceleration in the development of robust,
user-friendly computer vision applications.

Being the first of its breed, the Microsoft Kinect [Pri] comes with a pack of limitations: the
quality of the data leaves much to be desired compared to its more expensive counterparts,
featuring various artifacts that are hard to deal with. Furthermore, data can not be captured in
certain conditions (the camera is based on stereo with an near infrared projector and an IR
sensor, which make it very sensitive to external IR sources such as the sun, reflective or dark
surfaces). Also, the hardware is still relatively bulky. All the issues are alleviated by the very
low price point and the promise of considerable improvements in the next iterations of the
product.

1.1 Depth-only Registration

The system that is going to be presented in this thesis uses only the depth images produced
by the sensor. The main reason for using only the depth information of the RGB-D sensors
is that the RGB information captured with cheap depth and color cameras varies a lot under
changing lighting conditions. As there is no direct control on the exposure of the camera (it
defaults to auto-exposure), the device tends to make sudden jumps between exposure levels
(see Figure 1.1). This makes it nearly impossible for RGB features to be stable and repeatable
and not cause the loss of the camera track. It becomes especially problematic when scanning
entire rooms, as it is inevitable that the camera will be pointed to a strong source of light (i.e.,
window, light bulb). In addition, we aim at developing a system that is independent from the
lighting conditions and repeatable at any time of the day, under natural or artificial light.

Color information is not reliable under heavy noise (in low-light conditions, the ISO settings

2

1.2. Similar Systems

of the camera are increased, causing a lot of static noise) and under motion blur. Furthermore,
RGB-D cameras do not work outdoors because of the presence of strong infrared lighting from
the sun. An option is to scan after sunset or in shady areas, straining the color sensor a lot or
not capturing any color at all. This means that one can only rely on depth for such cases. The
problem of localization can involve having a map and attempting to localize in it at different
times of the day, under very different lighting situations - the geometry will be constant, but
the colors will differ heavily.

One can argue that color texture is ubiquitous in household and office settings, but those are
very repetitive (i.e., carpets with repeating patterns, wooden furniture etc.). This property
causes a lot of false positives when trying to match frames with possibly unknown initial poses.
On the contrary, geometry is a lot less repetitive in these conditions, leading to more confident
matches of 3D features.

The last reason for focusing only on depth data for this thesis is that in the last couple of years
there have been a number of scientific publications presenting RGB-D mapping, but none
of them became the definitive solution to the simultaneous localization and mapping in 3D.
We find that their approaches combining RGB and depth in rather incoherent ways, as the
systems seem to be mere engineering attempts at combining known approaches from 2D
computer vision and 3D registration, without looking closely into the particularities of this
new generation of sensors. As such, we will thoroughly explore the possibilities and limitations
of the Z-information generated by cheap 3D cameras.

1.2 Similar Systems

The ubiquity of cheap RGB-D cameras attracted the attention of computer vision researchers
in the last years, resulting in numerous publications tackling the mapping problem in various
ways. These systems are split into two categories:

• incremental - the camera is tracked in a progressive fashion, accumulating errors from
frame to frame, and never adjusting past pose estimations.

• the ones that perform loop closure - the difference from the above category is that
previous estimations are adjusted as new information about the scene is retrieved by
the camera.

Microsoft Research propose a system called Kinect Fusion [IKH§11], which falls into the first
group. The authors do incremental registration using only depth data with the incoming
frame against a depth map obtained from a rendering under the same camera parameters of a
truncated signed distance function. This global data structure is updated with the new point
cloud and its estimated pose, and the process is repeated for the next scan. The pipeline was
implemented only for GPUs, making use of highly parallel operations such as bilateral filtering

3

Chapter 1. Introduction

Figure 1.2: Augmented reality with Kinect Fusion.

Figure 1.3: From left to right: the input RGB image, the input depth image, the reconstructed
mesh with Kinect Fusion as seen from the current camera pose. Notice the fact that the mesh
is not complete on the left side, as the volume of the scanned scene is directly proportional
to the amount of memory on the graphics card. This results in being limited to desktop-size
volumes with currently available hardware.

and depth map renderings. This allows the algorithm to run at 30 Hz on capable hardware,
opening up possibilities for real-time applications such as augmented reality (Figure 1.2).
However, the system has fundamental flaws that make it unreliable for mapping of indoor
environments larger than a desk. First of all, the camera tracking is done in an incremental
fashion, making it impossible for the system to fix past misalignments. This means that if the
camera track is lost, the scanning process has to be completely reset and started from scratch.
Furthermore, drift will be accumulated, and no loop closure techniques are employed, making
it difficult to robustly scan complete objects or entire rooms. Another issues is that the TSDF
requires considerable memory and is stored on the GPU. This causes a trade-off between
between the volume to be scanned and the level of detail of the reconstruction. Positioning the
starting pose of the camera track inside the volume is a tricky choice. The system simply stops
adding new areas to the TSDF if the limit of the volume is reached (Figure 1.3). However, the
TSDF allows for quick mesh extraction because the structure is ready to be used in a marching
cubes algorithm at any stage of the reconstruction.

Kintinuous [WJK§12] overcomes some of the limitations of Kinect Fusion. The first improve-
ment is the implementation of the truncated signed distance function as a cyclical buffer,
allowing for larger scenes to be scanned. Once the limit of the volume is reached, the TSDF
is moved, making space for the new areas of the scene. The discarded data is moved to the
much larger main memory of the computer and eventually dumped to disk. In addition to the
depth-only ICP used for camera tracking, the authors experiment with various combinations

4

1.2. Similar Systems

of visual odometry and ICP. In addition, color information is integrated in the TSDF, and the
output meshes have per-vertex coloring. Although this system still does not do explicit loop
closure, the quantitative results are encouraging.

The framework that is common in some publications [HKH§10], [SEE§12], [PKDB10] is that of
using sparse RGB features in combination with dense cloud registration forming constraints
that are optimized in a pose graph, making up the second category of RGB-D mapping systems.
[HKH§10] use both the SIFT feature correspondences and the dense XYZ subsampled point
to plane correspondences in a joint Levenberg-Marquardt optimization. The optimizer is
initialized by a RANSAC step with the color features or by using a constant velocity assumption
in case the previous method fails. [SEE§12] compute the transformation between two frames
with RANSAC on SURF correspondences, followed by a refinement step using the dense point
to plane correspondences. Both approaches compute the normals by principal component
analysis in a local spherical neighborhood for each point. [HKH§10] stop the minimizer after
a fixed number of iterations or when the error does not change significantly from one iteration
to the next. While [SEE§12] do additional pairwise registration between the current frame and
past frames uniformly sampled from the timeline, [HKH§10] define the concept of keyframe
as a frame that does not have sufficient feature matches with the previously labelled keyframe.
This new keyframe is then registered against all the other keyframes detected so far. Both
methodologies use graph optimizers to relax the errors (TORO [GSB] and G2O [KGS§11]).
The results presented by the authors are very promising and we build our work on the ideas
suggested by this research.

All the systems presented so far perform fully automatic registration with some amount
of feedback to the user in the process. Du et al. [DHR§11] claim that naturally all RGB-D
mapping systems will fail due to far from perfect robustness or due to mishandling by the
operator (for example, by moving the camera too fast thus causing blur or large frame to frame
displacements, getting too close or too far from the object of interest, pointing the camera at
surfaces that are not registrable due to lack of geometry or texture etc.). In order to alleviate
the difficulties that a system faces under hard conditions, the authors suggest a set of ways
in which the user is asked to intervene in the pipeline during acquisition, and not only at
the post-processing stage as most systems do. The interactive mapping approach will alert
the user if the incremental registration failed, stopping the processing and asking the user to
physically return to the area of the scene where the last successfully registered frames were
collected. The user receives information about the current state of the scanned model as a
top-down view of the environment with the unknown areas highlighted. To simplify the work
of the graph optimizer, loop closures are done under the supervision of the operator. Instead
of automatically deciding if a loop is to be closed, the system presents the user with the most
plausible pairs of frames that produce loop closures in the current map.

5

Chapter 1. Introduction

Figure 1.4: The proposed pipeline overview.

1.3 Pipeline Overview and Thesis Organization

An overview of the pipeline that is proposed is shown in Figure 1.4. Throughout this thesis,
each component of the system is presented in detail and benchmarked against other state-
of-the-art options, motivating the choices we made at each step. As mentioned in a previous
section, we limit ourselves to using only the depth of the Kinect. Section 2.2 shows ways in
which the data can be cleaned, enhanced and subsampled for maximum efficiency. A large
portion of our discussions is centered on the pairwise point cloud registration, explaining all
the steps and possible enhancements, covered in Chapter 2. Graph optimization techniques
are presented in Chapter 3. Surface reconstruction techniques and different ways of adding
color to the meshes for more realistic results are discussed in Chapter 4. Chapter 5 presents
how planar features can be used in conjunction with the proposed system in order to enhance
the output at various stages of the pipeline. Chapter 6 shows results, comparisons with other
systems and proposals for future work.

6

1.4. Datasets

Figure 1.5: Some sample datasets that are going to be used in the thesis.

1.4 Datasets

The work that is presented in the following pages concentrates on RGB-D sensors developed
by PrimeSense [Pri]. These are commercialized as the Microsoft Kinect (both the for XBox and
for Windows versions) [kin] and the Asus Xtion Pro [asu]. These devices were advertised as
gaming controllers and quickly became attractive to researchers because of their accessible
prices and good price to quality ratio. Another point of interest is their ubiquity in households
(Microsoft claims 18 million units (Kinect) sold as per January 2012), so developing new
software guarantees a large market.

The data is captured by moving the camera unconstrained in static indoor environments. We
scanned offices and rooms, as well as individual objects, cluttered desktops etc. (see Figure 1.5
for a few samples). An important source of datasets apart from the ones collected by ourselves
is the collection provided by the Computer Vision Group at Technische Universität München
[SEE§12]. The sequences they offer for free for research purposes on their website present very
specific motions (only rotation, only translation, combined), recording patterns (without any
loop closures, with multiple small loop closures, with few large loop closures), various scenes
(with or without any color texture, rich or poor in geometrical details, large open spaces, tight
cluttered environments etc.). Apart from the advantage of being able to use the same data as
other perception researchers across the world, these datasets come with ground truth poses.
These are grabbed from a high-accuracy motion-capture system able to provide absolute
transformations with a claimed average error of 1 cm and 0.5 degrees [SEE§12]. The pose
information is not synchronized with the Kinect frames, which also come in a different format
than the one used in our application.

In order to benchmark some steps in our pipeline, we needed scans without the inherent

7

Chapter 1. Introduction

Figure 1.6: The Blensor software interface for generating simulated RGB-D scans.

noise of the sensor. Some researchers solve this by scanning objects for which they have CAD
models and then fit these models in the scans. We opted for a simpler, but less realistic method
- that of simulating the scans. For this purpose, we employed Blensor [GKUP11], which is built
on top of the popular Blender modeling and animation software and can generate scans that
simulate the ones of various commercial sensors in artificial scenes (see Figure 1.6).

1.5 Open Source Software

The implementation of the pipeline presented in this thesis would not have been possible
without open source software. We extensively used libraries such as: Boost [boo], Visualization
Toolkit (VTK) [SML], Eigen [GJ§10], FLANN [ML09], Point Cloud Library (PCL) [RC11]. This
is because the concepts we work with are so extensive, that implementing everything from
scratch would be highly unfeasible. As Linus Torvalds pointed out: "given enough eyeballs,
all bugs are shallow", successful open source software is based on large communities of
active developers with diverse backgrounds. This highly increases the probability of the
implementations being and correct and well optimized, which is difficult with a one-person
effort.

The Point Cloud Library is the main building block for the work done in this thesis and most
of the concepts and novelties presented in the following chapters are contributed back to the
library. That is why we dedicate a section to explain what the library has to offer.

PCL is a large scale, open source project for 2D/3D image and point cloud processing. The
code is divided into multiple modules (see Figure 1.7) that cover subjects such as filtering,
registration etc., each one containing BSD-licensed implementations of state-of-the-art com-
puter vision algorithms. The library also comes with extensive visualization tools and support

8

1.5. Open Source Software

Figure 1.7: The dependency graph of the Point Cloud Library modules.

for popular sensors such as the Microsoft Kinect or the Velodyne laser scanners.

The code is contributed by more than 500 developers from across the world, ranging from
hobbyists and artists to engineers and researchers. The popularity of the library is confirmed
by the over 100 million hits on the domains, out of which more than half a million are unique
visitors. It is hosted and maintained by its own non-profit foundation, Open Perception, which
is currently catering for the commercial and academic success of the project.

The sub-modules cover the following topics:

pcl_io includes classes and methods for loading and saving ppint clouds and polygonal
meshses in various popular file formats (e.g., .pcd, .vtk, .obj, .ply). It also contains
wrappers on top of drivers for sensing devices such as the PrimeSense RGB-D cameras.

pcl_search provides a framework for fast search algorithms in both organized and unorga-
nized point clouds. In the case of organized, it uses the grid structure to speed up the
search. The searches in general point clouds are performed using kd-trees, aided by
the FLANN library [ML09]. All the classes allow for k nearest neighbor and radius search
methods.

pcl_octree hierarchical tree structure for storing and processing point sets.

pcl_filters covers outlier and noise removal methods, sampling strategies based on point
distribution, normal distribution or covariances etc.

pcl_features data structures and algorithms for extracting 2D color features, 3D geometrical
features, and combinations of both from images and point clouds. These include but
are not limited to: BRISK, PFH, FPFH, PPF etc.

pcl_keypoints implementations of interest point detection in point clouds; i.e., points that
are stable, distinctive and repeateable across views of the same scene/object. These
can be used in combination with feature descriptors in order to efficiently match point
clouds.

9

Chapter 1. Introduction

pcl_segmentation contains algorithms for segmenting a point cloud into distinct clusters
based on some criteria. This can be useful for separating differnts parts of a cloud in the
semantic sense, or just for ease of further processing.

pcl_sample_consensus the module is based on sample consensus methods such as RANSAC
and other of its derivatives, and contains models for isolating structures such as spheres,
cylinders, planes, or arbitrary shapes in unorganized point clouds.

pcl_surface methods for reconstructing surfaces from their sampled representation. This
includes meshing approaches, local polynomial fitting (for re-sampling) etc.

pcl_registration contains components (correspondence estimation and filtering, transforma-
tion estimation etc.) for registering point sets together in iterative (ICP) or randomized
frameworks (RANSAC).

pcl_visualization built to allow for quick prototyping and visualizing algorithmic results. It
has support for viewing point cloud an mesh data in various ways, along with additional
propertires such as normal information, feature descriptors and so on.

pcl_range_image contains classes for representing and working with range images.

1.6 Contributions

The contributions brought by the work presented in this thesis include:

• thorough exploration and analysis of how state-of-the-art point cloud registration tech-
niques, most of which where originally introduced in uncolored laser scanning scenarios,
can be adapted to the particularities of the depth maps of novel RGB-D cameras: data
organized in a pixel/dexel grid with pinhole camera projective properties, but with large
amounts of noise in various forms.

• a complete system for RGB-D SLAM using advanced graph optimization technique

• methods for assigning colors to arbitrary meshes that result from our mapping system.

• local geometric feature descriptors, in particular planar shapes, as an efficient and
robust mean of enhancing the pipeline:

– point cloud registration with and without initial aligment

– landmarks in the scene for pinning the graph optimizer

– using indoor environment heuristics for improving the quality of the final model
by adding plane-to-plane constraints.

10

2 Point Cloud Registration

2.1 Introduction and Related Work

In this chapter, the methodology for registering a pair of point clouds is presented, as well as
the reasoning behind the design decisions that led to the final computational graph of the
system. Rusinkiewicz summarizes the optimizations that were proposed over the years in his
2001 publication [RL01]. An analysis is performed on the available options at each step of the
process: selection of points, matching, pair weighting, pair rejection, error metrics, minimiza-
tion of the error metric. The authors use a standard pipeline as baseline for their comparisons
and just plug in the various methods in each of the steps, comparing the convergence rate for
each situation. Starting from the baseline, [Pul99]:

• random sampling of both input clouds

• closest point correspondence, filtering out pairs with normals more than 45± apart

• constant weighting of point pairs

• point-to-plane error metric solved with the classic select-match-minimize iteration

they reach the conclusion that the best combination in terms of speed would be:

• projection-based point pairing

• point-to-plane error metric with select-match-minimize iterations

• all the other stages did not seem to considerably influence the convergence rates, so the
best in terms of speed are:

– random sampling

– constant pair weighting

11

Chapter 2. Point Cloud Registration

– distance threshold for rejecting pairs

By starting from their conclusions, in the following sections we look into additional methods
of improving the registration pipeline. First, in Section 2.2, possible pre-processing steps will
be presented. Next, correspondence estimation and rejection is detailed in Section 2.3. Finally,
transformation estimation methods including ways of weighting point pairs are evaluated in
Section 2.4.

Numerous researchers [DRT§04], [PMC§11] conclude that no fixed parameters are good for an
ICP pipeline, and that they have to be adaptive or tuned for a specific application, taking into
consideration the expected motion (handheld camera, mounted on a robot, vibrations), sensor
characteristics (frequency, noise, field of view), the environment particularities (planarity,
distance of objects from the sensor etc.).

2.2 Point Cloud Pre-processing

In this section, noise filtering for Kinect data will be presented, then state-of-the-art sampling
procedures, and efficient ways of computing per-point normals for organized point clouds.

2.2.1 Filtering

Before proceeding into using the Kinect data, a filtering steps needs to be done in order to

12

2.2. Point Cloud Pre-processing

(a) (b) (c)

Figure 2.1: Various types of noise RGB-D cameras produce: (a) noise on a flat surface; (b)
quantization effects; (c) missing pixels.

alleviate the various types of noise that this type of sensor produces (see Figure 2.1). There are
multiple ways in which noise could be efficiently eliminated from general point cloud data
[Rus], but none of which take into account the difficult quantization effects seen in this new
type of data. Nguyen et al. [NIL12] devise noise models for both the lateral and the axial noise
of the Kinect, as in Equations 2.1 and 2.2, where px is the pixel size and fx is the focal length of
the depth camera.

æL(µ)[px] = 0.8+0.035§ µ
º/2°µ

æL(µ)[m] = æL(µ)[px]§ z §px / fx
(2.1)

æz (z,µ) = 0.0012+0.0019§ (z °0.4)2, when 10± ∑ µ ∑ 60± (2.2)

The authors claim that the coefficients in the equations were found manually. As such, the
lateral noise is linear with depth, and the depth noise is quadratic with respect to depth,
as concluded by multiple other authors in similar publications. But this model, like other
proposed models, still does not take into consideration the quantization effects.

Next, we will look into three noise removal methods: median filter, bilateral filter, moving least
squares fitting.

The median filter [Tuk77] is one of the simplest and wide-spread image processing filters. It
is known to perform well with "shot"/impulse noise (some individual pixels having extreme
values), it does not reduce contrast across steps in the function (as compared to filters based
on averaging), and it is robust to outliers. Furthermore, it is simple to implement and efficient,
as it requires a single pass over the image. It consists of a moving window of fixed size that
replaces the pixel in the center with the median inside the window.

The bilateral filter is a non-linear filter that smooths a signal while preserving strong edges, and
it has been successfully used in computer vision and computer graphics. Equation 2.3 shows
how the center pixel of a moving window of fixed size is updated. p is the current pixel, q is a
pixel in the kernel N around p, and Ip is the intensity of the pixel. Functions f and g measure

13

Chapter 2. Point Cloud Registration

Gaussian-weighted geometric distances, and photometric similarity, respectively. Intuitively,
the bilateral filter tends to smooth more when neighboring pixels are similar (uniform areas),
and smooth less when there are big jumps (avoid smoothing edges). This idea can be extended
to filtering a signal based on another synchronized signal. In our situation, we can filter (and
even up-sample) the depth map of a Kinect scan, by processing the contrast in the color image.
Mathematically, Equation 2.4 is similar, but the smoothing operators work in the color image
domain: S is the depth image, I is the RGB image and f and g are Gaussian functions centered
at 0 and with standard deviations æcolor and ædepth .

Ĩp =

P
s2N

f (p ° s)§ g (Ip ° Is)§ Is

P
p2N

f (p ° s)§ g (Ip ° Is)
(2.3)

S̃p =

P
q2N

Sq § f (||p °q||)§ g (||Ip ° Iq ||)
P

q2N
f (||p °q ||)§ g (||Ip ° Iq ||)

(2.4)

Paris et al [PD09] introduce a novel way of approximating the bilateral filter in order to make
fast implementations possible. This is done by interpreting the image as a function plotted in
3D, where the whole filter becomes a convolution in 3D. The authors prove that this approach
yields very similar results to the original bilateral filter, but with much faster runtimes. In the
following discussion, all the bilateral filtering results will use the PCL implementation of this
algorithm.

The last noise removal method we used is based on fitting local maps using the moving least
squares technique [ABCo§03]. For each point p of the cloud, a local plane is estimated for the
neighborhood by principal component analysis (PCA) and a 2D function g (x, y) (usually of
degree 2 or 3) is fitted, as in Equation 2.5, where q is the origin of the reference frame (i.e., the
origin of the local plane), n is the normal of the plane, and pi is a point in the neighborhood
of q . The initial point is then projected to this function and pushed into the result cloud.

NX

i=1
[g (xi , yi)°n ± (pi °q)]2 §µ(||pi °q ||) (2.5)

In order to smooth the high noise of Kinect data, large neighborhood radii need to be used,
especially for points farther away from the camera. This is computationally intensive, so
various improvements can be done. Instead of using every point in the input cloud, one could
use each k-th point and make sure that all the surfaces are taken into account by sampling

14

2.2. Point Cloud Pre-processing

Cloud RMSE original RMSE Bilateral RMSE MLS [cm] RMSE Median
Simulated Noise [cm] Filter [cm] Filter [cm] Filter [cm]

1 18.219 17.465 17.672 17.457
2 19.730 19.092 19.123 19.147
3 17.066 16.782 16.665 16.436
4 17.259 17.173 16.756 16.475
5 11.542 11.533 11.197 10.938

Table 2.1: RMS errors of simulated Kinect data using Blensor, after being filtered with the three
proposed approaches, as compared to the ground truth noise-free data.

uniformly or within a voxel grid. Furthermore, this method allows for changing the density of
points in the input data by sampling the local plane and projecting the new points to the local
function. More details on different sampling methodologies and their effects can be found
here [Ich12]. An advantage of this approach is that it works on general, unorganized point
clouds, so moving least squares (MLS) smoothing can be applied as a post-processing step on
the global point cloud (concatenation of registered point clouds) in order to smooth out any
remaining noise or registration imperfections. In addition, this method can be made more
robust by computing the local function in an iterative fashion on the same patch of points and
using an M-estimator to eliminate outliers in each iteration.

Figure 2.2 displays the results using the three described filtering methods, with the best
parameters we found. It is clear that the median filter (second row) and the MLS filter (third
row) have difficulties with the quantization effects presented by the Kinect sensor at large
depths, by clustering slices together and exaggerating the distances between them. This will
most likely cause issues when pairing points between frames. The bilateral filter (fourth
row) performs best at all depths, handling the sharp edge of the box well (first column), and
alleviating the quantization effects at high depths, by spreading the points on the surface. In
terms of running times, MLS is the slowest with an average run time in the seconds range for
each 640x480 cloud, followed by the median filter at 300 ms, and the fast implementation of
the bilateral filter at 80 ms per cloud. In conclusion, the filtering of choice for our application
is the latter.

We performed a benchmark for the proposed algorithms using a simulated Kinect sensor in
the Blensor software. We generated five scans of a kitchen setting with and without noise,
applied the three filters on each noisy cloud and computed the RMSE improvement compared
to the input. The results are shown in Table 2.1.

2.2.2 Sampling

As introduced by [RL01], there are multiple simple ways of sampling point clouds in order to
improve the performance of registration. The authors look into the options of:

15

Chapter 2. Point Cloud Registration

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.2: Close-up on results of different types of filtering: (a, b, c) unfiltered input cloud; (d,
e, f) median filter; (g, h, i) MLS filter; (j, k, l) bilateral filter

16

2.2. Point Cloud Pre-processing

• using all the points

• uniform sampling

• random sampling

• normal space sampling

• sampling points on color edges

Rusinkiewicz quantifies the performance of these sampling methods by plugging them into a
baseline ICP pipeline and checking how fast two clouds converge, using artificially-generated
datasets. Their conclusion is that normal space sampling performed the best. We add one
more method to the list, based on [GR03], called covariance sampling. In addition to evaluating
the convergence rate on a few RGB-D scan pairs that represent common situations in our
reconstruction application, we perform an analysis of how fast the pose estimation drifts away
from the ground truth in an incremental registration scenario.

Using all the points is a special case of uniform sampling (equivalent to using a sampling rate of
1). As concluded by [RL01], uniform and random sampling perform almost identically in their
tests. The only theoretical advantage of random sampling is that it forces the correspondence
estimation method to choose different pairs at every iterations, thus reducing the probability of
choosing the same possibly incorrect correspondences that might lead to slower convergence
or convergence into a local minima.

17

Chapter 2. Point Cloud Registration

Normal space sampling consists of placing the normals into m3 bins, where m is the number
of bins per dimension, and then randomly selecting an equal number of points from each
bin. Intuitively it suggests that the sampled cloud contains points that cover the half-sphere of
orientations uniformly. In [RL01], the authors concluded it performed better than the afore
mentioned methods.

Covariance sampling is based on the fact that a point cloud can be sampled better if we select
points such that the transformation is locked more easily. The target is to have a sampled
cloud with all eigenvalues of the covariance matrix being equal. Starting from the function
that is to be minimized by the registration process:

E =
kX

i=1
[(Rpi + t °qi) ·ni]2 (2.6)

By linearizing the rotation matrix, the transformation becomes a 6-vector [r T t T], and the
error becomes:

E =
kX

i=1
[(pi °qi) ·ni + r · (pi £ni)+ t ·ni]2 (2.7)

Each point exerts two types of forces on its pair: a translational force along the normal n of
each point p and a rotation torque around the axis (p £n) (i.e., orthogonal to the normal),
shown by the last two terms of the equation above. Thus, the error of a single pair changes as
follows, if one of the points moves by [¢r T ¢t T]:

¢di = [¢r T ¢t T]

"
pi £ni

ni

#

(2.8)

which leads to the covariance matrix for the cloud:

C = F F T =
"

p1 £n1 . . . pk £nk

n1 . . . nk

#2

64
(p1 £n1)T nT

1

.
(pk £nk)T nT

k

3

75 (2.9)

This covariance matrix helps us identify unconstrained transformations (i.e., clouds that can
"slide" on each other - the sliding direction is defined by the eigenvector corresponding to the

18

2.2. Point Cloud Pre-processing

(a) single wall (b) two walls (c) room corner

(d) desk clutter (e) boxes

Figure 2.3: Sample scans to show the correlation between the registration stability and the
condition number of the covariance matrix, see Table 2.2.

smallest eigenvalue). For example, if the matrix is not full rank, that means that the solution
transform is not unique. In order to quantify this, the authors suggest to use the condition
number of the matrix, which is the ratio of the largest eigenvalue to the smallest eigenvalue.
Figures 2.3, 2.4 and Table 2.2 show some Kinect scans along with their condition numbers
under certain sampling techniques. The closer this measurement is to 1.0, the more stable
the cloud is. As such, Gelfand et al. suggest an algorithm [GR03] to sample a point cloud so
that to minimize the condition number of the resulting set of points, and prove better ICP
convergence. Our experiments encouraged a combination between normal space sampling
and covariance sampling to be the best solution.

State-of-the-art SLAM systems employing RGB-D cameras make use of uniform and random
sampling, without dealing with more complex sampling schemes. [HKH§10] downsample
the clouds to 1

4 - 1
10 of their initial size (75000 - 30000 points) for geometric alignment. In

order to find the ideal parameters for an ICP pipeline for registering RGB-D clouds, [PMC§11]
consider that complex subsampling techniques are too slow for an online ICP procedure,
suggesting that uniformly sampling the cloud to a resolution of 160x120 (1

16 of the initial size),
and then randomly sampling to about 3700 points (1

100) is a good trade-off between precision
and performance. The authors also note that the factor that influences the running time of the

19

Chapter 2. Point Cloud Registration

(a) uniform sampling (b) random sampling

(c) normal space sampling (d) covariance sampling

Figure 2.4: The room corner point cloud sampled with various techniques.

Scan Condition number
input uniform random normal covariance

single wall 2946.26 2910.05 2959.42 498.65 635.89
two walls 862.45 1099.66 824.77 98.47 101.21

room corner 10.27 10.27 10.31 7.7 6.97
desk clutter 12.83 13.10 12.91 6.89 21.36

boxes 4.58 4.59 4.73 3.32 9.33

Table 2.2: Condition numbers for the covariance matrices of the clouds in Figure 2.3 sampled
differently.

20

2.2. Point Cloud Pre-processing

pipeline most significantly is the number of points left after sampling the clouds., so tuning
this parameter is essential.

2.2.3 Normal Estimation

A lot of computer vision tasks (e.g., segmentation, object recognition, reconstruction) make
use of normal data in addition to the 3D coordinates of the points. 3D sensors scan surfaces
by providing discrete sample points, usually with added noise. In this sampling process, infor-
mation about the orientation and curvature of the surface is lost. Normal estimation has the
purpose of restoring these values for each sample point by looking at its local neighborhood.

Klasing et al. publish [KAWB09] a thorough comparison of normal estimation methods, shed-
ding light on the mathematical and implementation details of each of the numerous normal
estimation methods developed by researchers in robotics, computer vision and computer
graphics. They split normal estimation methods into two categories: averaging methods
([Gou71], [JLW05], [Max99], [TW98]), and optimization-based methods. Approaches that av-
erage triangles in the neighborhood of the query point p in order to compute its normal fall
into the first category. The individual triangle normals are computed by cross product of
the sides, and then they are averaged using various schemes: angle-weighted, area-weighted,
centroid-weighted, and gravitational-weighted. The performance of these methods leaves to
be desired as compared to the optimization-based approaches, named like this because they

21

Chapter 2. Point Cloud Registration

solve the following optimization problem:

min
ni

J (pi ,Qi ,ni) (2.10)

where J is a cost functional that penalizes certain criteria, pi is the query point, and ni is the
normal to be computed. The most popular ways of solving this are:

PlaneSVD fit a local plane Pi = nix x +ni y y +niz z +d to the points of the local neighborhood
Qi , and minimize the error by using singular value decomposition.

PlanePCA minimize the variance of the points along a local coordinate system, where the axis
of lowest variance is the normal, i.e., the normal is the eigenvector of the XYZ covariance
matrix of the points in Qi corresponding to the smallest eigenvalue.

Based on the evaluation done by the authors, PlanePCA is superior to all the other methods in
terms of speed an quality of the results under different neighborhood sizes and amounts of
noise of the input data. PCL implements this as its main normal estimation method, and we
will be using it in our evaluation.

Recently, Holzer et al. [HRD§12] propose a new approach for normal estimation from orga-
nized clouds using the concept of integral images. The advantage of this data structure is
that it requires a linear pre-processing time and allows to compute the average value within a
rectangular area of the image in constant time. The integral image IO will be of the same size
as the input image O (Equation 2.11), and can be computed efficiently in a single pass through
the image as in Equation 2.12. Equation 2.13 proves that computing the average value in a
rectangular region of inner radius r can be done in constant time.

IO(m,n) =
mX

i=0

nX

j=0
O(i , j) (2.11)

IO(m,n) = IO(m °1,n)+ IO(m,n °1)° IO(m °1,n °1)+O(m,n) (2.12)

V (IO ,m,n,r) = 1
4r 2 [IO(m+r,n+r)°IO(m°r,n+r)°IO(m+r,n°r)+IO(m°r,n°r)] (2.13)

In the following, we present only the Smoothed Depth Change method suggested by Holzer

22

2.2. Point Cloud Pre-processing

et al., as their experiments showed it performed best under noisy data, as is the case with
the Kinect sensor. The first step is to smooth the data. As mentioned before in this section,
the noise levels along the z-axis of PrimeSense cameras vary quadratically with the depth
measurements. That is why smoothing will be done with a variable window size, proportional
to the square of the depth, creating the Smoothing area map B(m,n) =ÆD(m,n)2, where Æ is
a scaling factor that controls the smoothing area size. Smoothing this way can cause averaging
of points situated on different surfaces, so the Depth change indication map is introduced
to detect high contrast areas in the depth map (i.e., depth jumps). The contrast threshold is
adaptive, using the same observation about the depth noise as before:

C (m,n) =

8
><

>:
1

(
if ||±Dx (m,n)||∏ØD(m,n)2

or ||±D y (m,n)||∏ØD(m,n)2

0 otherwise

(2.14)

The final smoothing area map is computed as:

R(m,n) = min(B(m,n),
T (m,n)

p
2

) (2.15)

where T is the distance transform map corresponding to C . The normal for each point is then
calculated as the cross-product of the vectors formed by the upper and lower neighbors, and
the left and right neighbors, respectively: ~np = ~vp,h£ ~vp,v . The two vectors are computed using
the input point coordinates Px , Py , Pz , the integral image for the depth Iz and the adaptive
window radius r = R(m,n):

~vp,h,x = Px (m+r,n)°Px (m°r,n)
2

~vp,h,y = Py (m+r,n)°Py (m°r,n)
2

~vp,h,z = V (Iz ,m+1,n,r°1)°V (Iz ,m°1,n,r°1)
2

~vp,v,x = Px (m,n+4)°Px (m,n+r)
2

~vp,v,y = Py (m,n+r)°Py (m,n°r)
2

~vp,v,z = V (Iz ,m,n+1,r°1)°V (Iz ,m,n°1,r°1)
2

(2.16)

In comparison with the normal estimation based on PCA, the integral image approach yields
better results with less processing time, as concluded by the authors in their experiments. A
downside is the fact that the integral images normal estimation will not be able to compute the
normals near the border of the depth map, as represented in Figure 2.5. This is not problematic
for our implementation, as we are eliminating rows and columns around the image borders
anyway, due to the large distortions they suffer (see the previous subsections for more details).

23

Chapter 2. Point Cloud Registration

Figure 2.5: The integral images approach cannot compute the normals near the border of the
depth map.

We ran tests with both the PCA-based normal estimation and the ones based on integral
images. The parameters we found best for indoor scanning situations are a radius of 5 cm
for the PCA normal estimation, and a depth change factor of 1 cm with a smoothing size of
50 for the integral images normal estimation. The run times for a 640x480 Kinect cloud are
in the seconds range for the first approach and on average 50 ms for the second. In terms of
the quality of the normals, the integral images normal estimation performs better at different
depths (Figure 2.6), and they handle high curvature areas equally well. As such, we use the
integral images normal estimation in our pipeline.

2.3 Correspondence Estimation and Rejection

2.3.1 Correspondence Estimation

Correspondence estimation is the process of pairing points from clouds after filtering and
subsampling. We propose two ways of doing this: projection-based and search-based.

PrimeSense RGB-D cameras output a depth map and a registered RGB image, the colored
point cloud being a product of the two. This means that each point in the cloud corresponds to
a uv pixel/dexel, allowing us to do projections from points in world coordinates to the camera
plane by using the intrinsic and extrinsic camera parameters:

2

64
fx 0 cx 0
0 fy cy 0
0 0 1 0

3

75

2

66664

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

3

77775

2

66664

Px

Py

Pz

1

3

77775
=

2

64
d ·u
d · v

d

3

75 (2.17)

where the first matrix is the projection matrix of the source camera, the second matrix is the
transformation of the source camera, d is the depth of the projected point P in the target

24

2.3. Correspondence Estimation and Rejection

(a) Near, 1 meter depth

(b) Far, 3-4 meters depth

Figure 2.6: Comparison of the quality of the normals at different depths: [left] integral images
normal estimation, [right] PCA-based normal estimation

25

Chapter 2. Point Cloud Registration

camera, and u, v are the coordinates of the P in the target camera plane.

This approach is very fast, but imprecise, especially when considering point clouds with large
depth discontinuities. That is why this method is recommended to be used only after the two
point clouds have been brought close together, making it good for aligning consecutive point
clouds in a stream recorded at high frame rate.

Search-based methods are precise, always returning the closest point to the query point. A
naive way of searching for the nearest neighbor is by doing an exhaustive search through
all the target points for the the closet one to each source point. As this was proven to be
prohibitively expensive for applications using millions of points, various data structures for
rapid searches have been proposed, such as octrees and kd-trees. These data structures have
logarithmic search times (as opposed to the linear naive variant), but take longer to initialize,
usually O(N log N) or O(N 2) in the worst-case. In our implementation, we are using FLANN
[ML09], an open-source library for fast approximate nearest neighbor searches. It has been
empirically proven to be one of the fastest solution for 3D nearest neighbor searches, as
Elseberg et al. conclude [EMSN12] after comparing multiple open-source implementations of
nearest neighbor search strategies.

We perform a small timing test (results in Table 2.3). Considering the fact that we will generally
be using a small number of points for correspondences (around 3000-10000), the gain in per-
formance for projection-based correspondence estimation is not worth the imprecisions that
this method exposes, so kd-trees will be used throughout our implementation, as [HKH§10]

26

2.3. Correspondence Estimation and Rejection

Cloud size Naive search [ms] Kd-tree Projection-based [ms]
init [ms] search [ms]

307 200 35045 106 660 3
76800 2188 23 130 1
19200 139 5 25 1
4800 8 1 6 1

Table 2.3: Running times for different nearest neighbor search algorithms

also do.

2.3.2 Correspondence Rejection

Correspondence rejection is the step of filtering incorrect correspondences that have been
collected during the estimation process. This is an important step, as having "clean" correspon-
dences can ease the transformation estimation algorithm into finding the global minimum.
Furthermore, this step can take advantage of extra information about the input point clouds,
such as normal information or statistics about the correspondences. We investigate the
following methods:

pcl::CorrespondenceRejectorDistance This method filters out point pairs that have an Eu-
clidean distance between them larger than a given threshold, suggested by [RL01] (see

27

Chapter 2. Point Cloud Registration

Figure 2.7a)

pcl::CorrespondenceRejectorMedianDistance Unlike the previous rejector, this one does
not use a fixed threshold, but computes the threshold as being the median distance
between the input set of correspondences. This approach considers the distribution
of the distances between the points and it adapts, becoming smaller as the two point
clouds come closer together in the ICP iterations. And unlike an adaptive threshold
based on the mean, using the median reduces the influence of outliers.

pcl::CorrespondenceRejectorOneToOne Usually, each sampled point in the source cloud
gets a correspondence in the target cloud, so it might be the case that the same point in
the target cloud gets multiple corresponding source points due to different sampling
rates (see Figure 2.7c). This method keeps a single such pair (psr cmi n , pt g t): the one with
the minimum distance out of all the pairs (psr ci , pt g t), i = 1 : k. This rejection method
is not suited for registering surfaces with different point densities: suppose a source
surface has a higher density than a target surface that is close to it; in a point-to-plane
situation, having a target point paired with multiple source points will not affect the
registration, and thus these pairs should not be thrown away, as they positively influence
the convergence of the algorithm.

pcl::CorrespondenceRejectorSampleConsensus Uses RANSAC to estimate a transformation
for the given set of correspondences and eliminates the outlier correspondences based
on the Euclidean distance between the points after the best transformation is applied
to the source point. This method is very effective in keeping the ICP algorithm from
converging into a local minima, as it always produces slightly different correspondences
and is good at filtering outliers. In addition, it provides a good initial estimate for ICP.

pcl::CorrespondenceRejectorSampleConsensus2D Similar to the previous approach, only
that it rejects pairs based on their distance in the image plane after the source point is
transformed and projected into the target camera plane.

pcl::CorrespondenceRejectorSurfaceNormal Introduces normal information about the pairs,
and rejects those pairs that have inconsistent normals, i.e., the angle between their nor-
mals is larger than a given threshold. It can reject erroneous pairs that seem correct
judged by the distance between the points, such as the case depicted in Figure 2.7b.

pcl::CorrespondenceRejectorBoundaryPoints When the two point clouds represent sur-
faces that have partial overlap, allowing for correspondences containing surface bound-
ary points can introduce errors (Figure 2.7d). In order to detect boundary points, we can
use the organized nature of the input point clouds and eliminate the correspondences
that contain points on depth discontinuities by moving a window across the depth map
and checking if there are enough points in the window on the same surface with the
center point (within a certain depth range from the center point).

28

2.3. Correspondence Estimation and Rejection

(a) Correpondence rejection based on the Euclidean
distance between the points

(b) Correpondence rejection based on normal com-
patibility

(c) Correpondence rejection of pairs with duplicate
target matches

(d) Correpondence rejection of pairs that contain
boundary points

Figure 2.7: Correspondence rejection methods

29

Chapter 2. Point Cloud Registration

!0.05%

0%

0.05%

0.1%

0.15%

0.2%

0.25%

0% 50% 100% 150% 200% 250%

ONE%

TWO%

THREE%

FOUR%

FIVE%

SIX%

(a) cloud number vs angle RMSE in radians

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0" 50" 100" 150" 200" 250"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(b) cloud number vs translation RMSE in meters

Figure 2.8: The drift accumulated by the six different correspondence rejection pipelines in an
incremental registration situation (no loop closure).

Diebel et al. [DRT§04] apply a combination of ways for rejecting point pairs in their active
stereo point clouds, emphasizing the importance of rejecting points on mesh boundaries. In
addition, they reject pairs based on their normal compatibility and do a statistical analysis
on an adaptive threshold for rejecting pairs based on the Euclidean distance between the
points. The outcome is that a threshold equal to three times the median helps reach better
convergence with ICP.

In order to test these methods, we use the same approach as done for the sampling approaches
in Section 2.2.2, which is to run individual or different combinations of rejectors in a baseline
ICP pipeline and inspect the drift of the pose estimation in an incremental registration setting
on a sequence of 250 point clouds. Figure 2.8 shows the drift the six different pipelines
accumulate in terms of angle and translation (as compared to the ground truth).

We evaluate the convergence rate and the robustness of the transformation estimation under
various correspondence filtering pipelines. The optimization algorithm used for computing

30

2.3. Correspondence Estimation and Rejection

the transformation that minimizes the point-to-plane error metric was Levenberg-Marquardt,
under the following combinations of correspondence filtering methods:

ONE closest-point correspondence estimation with no filtering.

TWO closest-point correspondence estimation, with pcl::CorrespondenceRejectorMedianDistance
(threshold equal to twice the median distance) filtering.

THREE closest-point correspondence estimation, with pcl::CorrespondenceRejectorMedianDistance,
and pcl::CorrespondenceRejectorSurfaceNormal (threshold of 30±) filtering.

FOUR closest-point correspondence estimation, with pcl::CorrespondenceRejectorMedianDistance,
pcl::CorrespondenceRejectorSurfaceNormal, and pcl::CorrespondenceRejectorBoundaryPoints
filtering.

FIVE closest-point correspondence estimation, with pcl::CorrespondenceRejectorMedianDistance,
pcl::CorrespondenceRejectorSurfaceNormal, pcl::CorrespondenceRejectorBoundaryPoints,
and pcl::CorrespondenceRejectorOneToOne filtering.

SIX closest-point correspondence estimation, with pcl::CorrespondenceRejectorMedianDistance,
pcl::CorrespondenceRejectorSurfaceNormal, pcl::CorrespondenceRejectorBoundaryPoints,
and pcl::CorrespondenceRejectorSampleConsensus (with a maximum of 1000 itera-
tions and inlier threshold of 5 cm) filtering.

We will use a single source scan and pair it against 3 target scans that are at different distances
from the initial scan (see Figure 2.9):

• rotation of 1.3± and translation of 1 cm.

• rotation of 4.3± and translation of 4.5 cm.

• rotation of 8.3± and translation of 23 cm.

The conclusion of the evaluation based on pair registration convergence is that in the case
of general indoor scenes scanned with a Kinect, the correspondence filtering methods do
not have a strong influence on the result. They all converge with similar rates, and noisy
correspondences do not influence the robust LM-based optimizer a lot. Another exception is
the non-filtered pipeline (ONE)

The difference between the various pipelines is the number of actual pairs that the optimizer
has to solve for. Having more pairs will cause the solver to take more time to compute the
solution, as presented in Table 2.4. In conclusion, pipeline SIX provided the best results both in
terms of time and convergence rate, and the usefulness of the RANSAC-based correspondence
rejection will be analyzed again in the next section.

31

Chapter 2. Point Cloud Registration

(a) clouds 1 and 2

(b) clouds 1 and 3

(c) clouds 1 and 4

Figure 2.9: The three pair clouds that will be used in the correspondence filtering and transfor-
mation estimation methods evaluation.

32

2.3. Correspondence Estimation and Rejection

Pipeline Correspondence filtering time [ms] Optimizer time [ms]
ONE 14.1, 15, 27.4 7.2, 7.4, 12.3
TWO 14.9, 15.5, 21.5 6.1, 5.5, 5.7

THREE 14.4, 15.2, 22.5 5.1, 4.7, 2
FOUR 15, 15, 23.8 1.6, 1.4, 0.6
FIVE 15, 15, 24 1.4, 1.6, 0.56
SIX 19, 18.4, 26 1.6, 1.36, 0.5

Table 2.4: Timing for the six correspondence filtering pipelines and the optimization.

0"

0.00005"

0.0001"

0.00015"

0.0002"

0.00025"

0.0003"

0.00035"

0.0004"

0" 1" 2" 3" 4" 5" 6" 7" 8"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(a) iteration vs MSE

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 1" 2" 3" 4" 5" 6" 7" 8"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(b) iteration vs percentage of filtered correspondences

Figure 2.10: The progress of the different correspondence estimation and rejection pipelines
as they converge in registering the first and second test clouds.

33

Chapter 2. Point Cloud Registration

0"

0.0005"

0.001"

0.0015"

0.002"

0.0025"

0.003"

(1" 1" 3" 5" 7" 9" 11" 13" 15"

ONE"

TWO"

THREE"

FOUR"

SIX"

(a) iteration vs MSE

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

)1" 1" 3" 5" 7" 9" 11" 13" 15"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(b) iteration vs percentage of filtered correspondences

Figure 2.11: The progress of the different correspondence estimation and rejection pipelines
as they converge in registering the first and third test clouds.

34

2.3. Correspondence Estimation and Rejection

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(a) iteration vs MSE

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

(b) iteration vs percentage of filtered correspondences

Figure 2.12: The progress of the different correspondence estimation and rejection pipelines
as they converge in registering the first and fourth test clouds.

35

Chapter 2. Point Cloud Registration

2.4 Transformation Estimation and Pair Weighting

The transformation estimation step is done after the corresponding points from the source
and target cloud have been filtered. Over the years, there have been numerous mathematical
approaches for solving for the transformation that minimizes the error of the point pairs.

There are two main error metrics to be minimized that have been considered in literature:
point-to-point (Equation 2.18) and point-to-plane (Equation 2.19), where (pi , qi) are N pair
correspondences from the source cloud to the target cloud.

The point-to-point metric was first introduced by Arun [AHB87] in 1987; researchers proposed
various ways of minimizing this error metric [Hor87], [HHN88], [WSV91], followed by the
introduction of the Iterative Closest Point Algorithm in 1992 [BM92]. Eggert et al. [ELF97]
evaluated each of these methods in terms of numerical stability and accuracy reaching the
conclusion that they are close performers.

In 1991, Chen [CM92] introduces the point-to-plane metric and proves to be more stable
and converge faster than the previous approaches. This metric does not have a closed-form
solution like the point-to-point, so the solutions are split into non-linear solvers (such as
Levenberg-Marquadt, as proposed by [DF01]), or by linearizing it [Low04] (by assuming small

36

2.4. Transformation Estimation and Pair Weighting

rotations, i.e. si nµ ª µ and cosµ ª 1).

NX

i=1
||R pi + t °qi ||2 (2.18)

NX

i=1
((R pi + t)°qi) ·nqi)2 (2.19)

The weighting of the point pairs can be seen as a soft correspondence rejection, adjusting
the influence of that pair in the minimization process, as opposed to the hard rejection of
completely ignoring the pair. The weighting can be a function of the point-to-point or point-
to-plane distance between the points, a function of the angle between the normals of the
corresponding points, or a function of the noise model of the sensor that has been used. We
will employ the latter in our implementation, inspired by the Kinect noise model derived in
[NIL12] (Equation 2.20). All of the papers we have researched that mention the weighting of
point pairs have marked this as a beneficial step for the robustness and convergence rate of
the transformation estimation algorithm [RL01], [NIL12], [HKH§10], [DRT§04].

w(pi , qi) = 0.0012+0.0019§ (max(piz , qiz)°0.4)2 (2.20)

We perform an evaluation on the convergence rate and the robustness to noisy correspon-
dences of these methods. We will use the same three pairs of frames with increasing relative
distances. In order to compute correspondences, we propose three schemes:

noisy correspondences - each source point is in correspondence with its closest target point
if the target point is within a fixed Euclidean distance.

clean correspondences - same as above, with a filtering step based on normal compatibility.

clean correspondences + randomization - same as above with a correspondence rejection
step based on RANSAC. This is to perturb the convergence enough so that the optimizer
does not fall intro local minima. It is expected that by using this rejection method, the
ICP will converge slower (i.e., in more iterations), but it is less likely to fall into local
minima.

The approaches we will look into, along with their corresponding PCL classes are:

pcl::registration::TransformationEstimationPointToPlaneLLS - based on [Low04], linearizes

37

Chapter 2. Point Cloud Registration

the point-to-plane error and reduces it to At A v = At b, with v being the 6-vector solu-
tion.

pcl::registration::TransformationEstimationPointToPlaneLLSWeighted - same as above, but
the point pairs have non-constant weights that depend on the squared distance from
the sensor.

pcl::registration::TransformationEstimationSVD - singular value decomposition approach
for solving for the transformation that minimizes the point-to-plane error metric.

pcl::registration::TransformationEstimationPointToPlane - based on [DF01], uses the Lev-
enberg Marquardt non-linear optimizer to minimize the point-to-plane error.

pcl::registration::TransformationEstimationPointToPlaneWeighted - same as above, but
the point pairs have non-constant weights, that depend on the squared distance from
the sensor.

The results are shown in Figures 2.13, 2.14, 2.15, as plots of the number of iterations against the
MSE between the source and the target clouds for all the transformation estimation methods
(both weighted and unweighted), using the three proposed correspondence estimation and re-
jection setups. The SVD method performs the worst, taking more iterations to converge for the
first pair of clouds. For the second pair, it does not converge to the global minima with the hard
and medium difficulty correspondences, but manages to with the easy clean ones (proving the
importance of randomization in the transformation estimation procedure). For the third pair
of clouds, it never manages to converge, no matter what correspondences we use. P2PLLS
works rather well on all the situations, except for the distant pair at the end, where it converges
to the wrong local minima without the randomization. The Levenberg-Marquardt-based
point-to-plane transformation estimation (P2P and P2PW) is the best performer, managing to
converge to the correct solution in all the situations, and with less iterations than the other
methods.

Unfortunately, the last series of tests did not prove the usefulness of weighting the point pairs
using the Kinect noise model, because the weighted versions of P2P and P2PLLS perform very
closely to their unweighted counterparts. As such, we will opt for a scene with a wider variance
of depths, ranging from 0.8 to about 5 meters (see Figure 2.17). Theoretically, the noisy points
far away from the camera should prove difficult to the transformation estimation methods
that consider uniform weighting. This is confirmed by the results we got from our runs in
Figure 2.16, as both the unweighted versions did not converge to the global minima, and the
weighted ones did.

2.5 Stopping Criteria and Transformation Validation

The registration process is an iterative algorithm, so we need a set of criteria to stop it by,
and to determine whether it was stopped due to the fact that it converged or it is irrevocably

38

2.5. Stopping Criteria and Transformation Validation

0"

0.00005"

0.0001"

0.00015"

0.0002"

0.00025"

0.0003"

0.00035"

0.0004"

0" 2" 4" 6" 8" 10" 12"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(a) difficult correspondences

0"

0.00005"

0.0001"

0.00015"

0.0002"

0.00025"

0.0003"

0.00035"

0.0004"

0" 2" 4" 6" 8" 10" 12"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(b) medium difficulty correspondences

0"

0.00005"

0.0001"

0.00015"

0.0002"

0.00025"

0.0003"

0.00035"

0.0004"

0" 2" 4" 6" 8" 10" 12"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(c) medium + RANSAC

Figure 2.13: The progress of the different transformation estimation methods, plotted as the
iteration number against the MSE measured in meters, for the first tested pair of clouds.

39

Chapter 2. Point Cloud Registration

0"

0.00005"

0.0001"

0.00015"

0.0002"

0.00025"

0.0003"

0.00035"

0.0004"

0" 2" 4" 6" 8" 10" 12"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(a) difficult correspondences

0"

0.0005"

0.001"

0.0015"

0.002"

0.0025"

0.003"

0" 5" 10" 15" 20" 25"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(b) medium difficulty correspondences

0"

0.0005"

0.001"

0.0015"

0.002"

0.0025"

0.003"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(c) medium + RANSAC

Figure 2.14: The progress of the different transformation estimation methods, plotted as the
iteration number against the MSE measured in meters, for the second tested pair of clouds.

40

2.5. Stopping Criteria and Transformation Validation

0"

0.002"

0.004"

0.006"

0.008"

0.01"

0.012"

0" 10" 20" 30" 40" 50" 60" 70"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(a) difficult correspondences

0"

0.002"

0.004"

0.006"

0.008"

0.01"

0.012"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(b) medium difficulty correspondences

0"

0.002"

0.004"

0.006"

0.008"

0.01"

0.012"

0.014"

0" 50" 100" 150" 200" 250"

P2P"

P2PLLS"

SVD"

P2PW"

P2PLLSW"

(c) medium + RANSAC

Figure 2.15: The progress of the different transformation estimation methods, plotted as the
iteration number against the MSE measured in meters, for the third tested pair of clouds.

41

Chapter 2. Point Cloud Registration

0"

0.002"

0.004"

0.006"

0.008"

0.01"

0.012"

0.014"

0.016"

0" 5" 10" 15" 20" 25" 30"

P2P"

P2PLLS"

P2PW"

P2PLLSW"

Figure 2.16: Plot showing the iteration number against the MSE for the Levenberg-Marquardt
point-to-plane transformation estimation (P2P), and the linear least squares point-to-plane
optimizer (P2PLLS), as compared to their weighted versions (P2PW and P2PLLSW). Please
note that the unweighted variants did not converge in the global minimum, leading to a wrong
transformation. Both weighted versions gave the correct results.

Figure 2.17: Example scene with a wider range of depths, that will be used to test the im-
provements brought by the weighting of the point pairs in the transformation estimation
procedure.

42

2.5. Stopping Criteria and Transformation Validation

diverging, and any number of supplemental iterations will turn it towards a correct solution.
The actual methods used are implemented in pcl::registration::DefaultConvergeCriteria:

maximum number of iterations Exceeding the number of iterations means that the opti-
mizer diverged in most of the cases. This threshold has to be tuned depending on the
complexity of the registration problem (expect that registering a pair of scans that are
far away from each other will require more iterations, than two scans that have a good
initial alignment). (Figure 2.18a)

absolute transformation threshold Stops the ICP when the currently estimated transforma-
tion (rotation and translation) is over a certain value. This is an early termination criteria
for optimizations that are diverging. The intuition behind it is that the two clouds to be
aligned are expected to be within a certain range of distances from each other, and so
transformations that are outside that range need to be rejected (e.g., two consecutive
handheld-Kinect scans recorded at 30Hz can not be more than 10 cm and 20 degrees
apart from each other). (Figure 2.18b)

relative transformation threshold Specifies what is the minimum transformation step from
one iteration to the next that is considered small enough for the optimizer to have
converged. In other words, it is a balance between precision and time performance
(important for tuning a system for real-time applications), as the threshold determines
what transformation increment is considered to be good enough for the application.
Also, it is possible that the minimizer never converges (i.e., null incremental transfor-
mation from one iteration to another), but produces small oscillations around the local
solution indefinitely; this criterion is designed to stop the ICP when such a situation is
reached. (Figure 2.18c)

maximum number of similar iterations The previous stopping criteria has the downside
that a minimizer might temporarily seem to have converged, but it is actually oscillating
in a local minima and has a chance of escaping it and converging into the global minima
(or another local minima). For this reason, we allow the optimizer to consistently spend
a number of iterations around a minima before considering it converged. (Figure 2.18d)

relative MSE This criterion is similar to the relative transformation threshold, using the mean
square error metric instead of the rotation/translation increment. (Figure 2.18e)

absolute MSE Another absolute threshold that stops the registration when the error between
the two aligned clouds is below a certain value. Sets the precision of the alignment in
the detriment of performance. (Figure 2.18f)

Due to the high risk of converging into local minima when registering two point clouds, another
series of checks is performed even if the ICP procedure confirms a successful convergence:

43

Chapter 2. Point Cloud Registration

1000 10 20 30 40 50 60 70 80 90

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iterations

er
ro

r
m

et
ri

c

(a) maximum number of iterations

1000 10 20 30 40 50 60 70 80 90

3.141

0

0.5

1

1.5

2

2.5

iterations

ab
so

lu
te

 r
ot

at
io

n
[r

ad
ia

ns
]

(b) absolute transformation threshold

1000 10 20 30 40 50 60 70 80 90

3.141

0

0.5

1

1.5

2

2.5

iterations

ab
so

lu
te

 r
ot

at
io

n
[r

ad
ia

ns
]

(c) relative transformation threshold

1000 10 20 30 40 50 60 70 80 90

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iterations

er
ro

r
m

et
ri

c

(d) maximum number of similar iterations

1000 10 20 30 40 50 60 70 80 90

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iterations

M
SE

 [
m

]

(e) relative MSE threshold

100 0 10 20 30 40 50 60 70 80 90

0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iterations

M
SE

(f) absolute MSE threshold

Figure 2.18: Graphical explanation of each of the ICP stopping criteria that we employed in
our application.

44

2.6. Conclusion

percentage of valid dexels The clouds we are registering should not have a lot of NaN depth
values (pixels in the depth map for which the sensor could not triangulate the depth).
As such, we check if the ratio between the number of valid dexels and the total number
of dexels in the image is above a certain threshold (around 60% proved to be a good
value). Such a test can be performed before the ICP routine is ran on the source and
target clouds individually.

percentage of inliers If the previous check is passed, the registration overlapping region
is measured. In order to do that, the source cloud is transformed with the resulting
ICP transform and projected into the target image. We go through every dexel of the
target image and check the depth difference between it and the projected source point,
counting the number of inliers (within an adaptive threshold based on depth of 5 cm
for a z-value of 1 m). The ratio of inliers to valid dexels should be around 80%. This
operation is similar to raytracing and checking if the empty space of the source point
cloud corresponds to the one of the target cloud. See Figure 2.19 for a visual explanation.

motion limit A simple check is done to make sure that the relative transformation between
the two frames is not exaggerated, which suggests convergence into an incorrect mini-
mum. It uses rotation and translation thresholds, which need to be tuned based on the
expected motion of the camera. In the case of our handheld Kinect scenario, we reject
rotations larger than 30 degrees between consecutive frames and translations greater
than 30 cm.

stability of the overlapping regions If all the previous tests have passed, a check on the stabil-
ity of the overalpping area is performed to make sure that the clouds do not slide against
each other, inspired by [GR03]. The 6D covariance matrix of the inliers is computed
and the condition number of this matrix is verified to be under a certain value. We
ran experiments on a number of datasets and concluded that a value of about 100 is
good for stable frame to frame registration. Similarly, one could verify the trace of the
information matrix to be larger than a given threshold, as it is loosely correlated to the
condition number.

2.6 Conclusion

In this chapter we have presented various approaches for the steps necessary to register
two point clouds. We started with noise reduction, extracted normal information and then
subsampled the point sets in order to speed up the subsequent computations without hurting
the alignment quality. Various techniques for estimating and filtering correspondences were
analyzed and benchmarked, then fed into an optimizer to obtain the transformation from the
source to the target frame. We then looked into ways of determining how many times we need
to run the above sequence in an iterative framework.

45

Chapter 2. Point Cloud Registration

Figure 2.19: Transformation validation by looking at the ratio of inliers in the overlapping
regions. If two surfaces match locally, we need to make sure that their empty space also
matches and that there is no additional depth information in the overlap region of any of the
clouds that does not have correspondences in the other cloud.

46

3 Graph optimization

3.1 Introduction and Related Work

In the previous chapter, we discussed about ways of efficiently and robustly registering a pair
of point clouds, along with analyses on how each design decision in the pipeline influences the
results. We saw that employing incremental registration will lead to quick error accumulation,
creating unacceptably erroneous maps only after a couple of hundred frames (less than 10
seconds of scanning at 30Hz) - see Figure 3.1. Any error in the estimation of the transformation
between a pair of two consecutive clouds will be passed on to all the subsequent clouds (Figure

47

Chapter 3. Graph optimization

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0" 50" 100" 150" 200" 250" 300"

RM
SE
%tr
an

sl
a,

on
%

itera,on%

(a) translational error accumulation

(b) incremental registration map (c) ground truth map

Figure 3.1: Incremental registration produces considerable drift. The graph on the left shows
the evolution of the translational error of incremental registration as compared to the ground
truth; the last two images show the resulting map and the ground truth map.

3.2a). The 3D camera we are using outputs data at 30Hz, meaning that in a handheld scenario
the scans will have a good overlap with their neighbors on the timeline. This immediately leads
to the idea of doing additional registrations between non-consecutive scans in order to correct
for the precision of the absolute localization of each scan (Figure 3.2b). These additional edges
are meant to pull the track from drifting away, but the problem becomes overdetermined.

We are now facing an over-constrained problem which we shall solve in the least-squares
sense. This problem is often visually represented as a graph, where the nodes are the variables
that needs to be solved for and the edges represent the constraints (see Figure 3.3). In the case
we have described in the previous paragraph, we will be using a pose graph, which aims at
solving Equation 3.1, where xi are the 6D poses of the cameras, zi j are the measurements
between two camera poses xi and x j , as 6D transformations. To avoid problems caused by
singularities (e.g, Gimbal lock) that the non-Euclidean space of 3D rotations has, the optimizer
uses an over-parametrized representation for rotations (e.g., rotation matrices or quaternions)

48

3.1. Introduction and Related Work

(a) incremental registration drift in graph (b) with additional edges to correct for the drift

Figure 3.2: The effect of accumulated drift in a pose graph, and correcting it by adding
additional links between overlapping poses.

Figure 3.3: Graph representation of the example objective function in Equation 3.2.

instead of Euler angles.

x§ = ar g mi nx [F (x)]
F (x) = P

e(xi , x j , zi j)T≠i j e(xi , x j , zi j)
e(xi , x j , zi j) = T (zi j)T (xi)T (x j)°1

(3.1)

F (x) = eT
12 ≠12 e12

+ eT
23 ≠23 e23

+ eT
25 ≠25 e25

+ eT
43 ≠43 e43

(3.2)

49

Chapter 3. Graph optimization

In order to solve this least-squares problem, the error function is linearized by approximating
it to its first order Taylor expansion:

ei j (x̆i +¢xi , x̆ j +¢x j) = ei j (x̆ +¢x) ' ei j + Ji j ¢x (3.3)

where Ji j is the Jacobian of ei j (x). Equation 3.1 now becomes:

Fi j (x̆ +¢x) = ei j (x̆ +¢x)T ≠i j ei j (x̆ +¢x)
' (ei j + Ji j ¢x)T ≠i j (ei j + Ji j ¢x)
= eT

i j ≠i j ei j +2eT
i j ≠i j Ji j ¢x +¢xT J T

i j ≠i j Ji j ¢x

= ci j +2bi j ¢x +¢xT Hi j ¢x

(3.4)

Plugging this back into the main equation:

F (x̆ +¢x) = P
i , j

Fi j (x̆ +¢x)

' P
i , j

ci j +2bi j ¢x +¢xT Hi j ¢x

= c +2bT ¢x +¢xT H ¢x
c = P

ci j

b = P
bi j

H = P
Hi j

(3.5)

The whole system then reduces to:

H¢x§ =°b (3.6)

Which is solved by incrementing the initial guess with ¢x§:

x§ = x̆ +¢x§ (3.7)

This can be done using the Gauss-Newton algorithm which will iteratively apply the last three
equations. Another option is the Levenberg-Marquardt algorithm which adds a dynamically-
controlled damping factor ∏ to control the Gauss-Newton convergence, Equation 3.6 is trans-

50

3.2. Pose Graphs for Kinect Mapping

formed into:

(H +∏I) ¢x§ =°b (3.8)

This challenge or other similar ones have been encountered in SLAM research, resulting in
a variety of approaches and available code for tackling them. The OpenSLAM community
[SFG] is gathering libraries, such as: HOG-Man [GKS§], TORO [GSGB07], iSAM [KRD08], G2O
[KGS§11]. Due to their popularity and active development, we have decided to use the last
two for our application wrapped under a common API. Published RGB-D mapping systems
use various optimizers without motivating their choices: [TRC12] use GTSAM, [HKH§10] use
TORO, [SEE§12] use G2O, and [PKDB10] build their own optimization framework.

3.2 Pose Graphs for Kinect Mapping

3.2.1 Incremental Construction of the Pose Graph

One of the targets of our system is to construct an architecture that is fast enough for real-time
applications. Ideally, to obtain good maps, one would need as many edges in the pose graph
as possible (maximum of N (N °1) edges, equivalent to having registered all the N frames
against all the other frames in the sequence). Such an approach would make the computations
intractable for longer sequences of clouds. A careful selection of the frames to be registered
and the contents of the graph to be optimized needs to be done. Each frame is registered with
its predecessor and the new edge is added to the graph if the registration was successful (i.e.,
converged). In order to reduce drift, as explained in the previous section, additional links
between camera nodes have to be added.

As a result, the concept of keyframes is introduced; an ordinary frame is considered a keyframe
if it is far away from the other keyframes in terms of angle, translation or time (meaning that
the minimum distance in any one of the angular, translational, or temporal spaces is larger
than a threshold). This guarantees a uniform distribution of frames in the scene, such that
most of the surfaces are covered, but the graph is not cluttered to ensure good optimization
performance. Another setup used in [HKH§10] is to consider a frame as being a keyframe
when the RGB features from the previous keyframe do not have sufficient correspondences in
the new frame. We considered our approach to be semantically similar, but with a much lower
computation cost as compared to checking for correspondences in feature descriptor space or
computing the overlap between two point clouds. Oppositely, [SEE§12] do not use keyframes
per se, but match each frame with the most recent 3 frames and 17 previous frames obtained
by uniformly subsampling in time space.

Due to its step-by-step build-up, the construction approach of the pose graph allows for apply-

51

Chapter 3. Graph optimization

ing more efficient incremental graph optimization algorithms such as iSAM [KRD08],[KJR§11],
as opposed to batch optimizers (such as G2O [KGS§11] or SAM [DK06]) that consider the pre-
vious optimization results as a mere initial guess for the new whole-graph optimization. iSAM
uses QR factorization of the sparse smoothing information matrix, and recalculates only the
values that actually change, being proven to be faster than its batch processing counterparts.

Algorithm 1 summarizes the steps of our incremental pose graph construction.

Algorithm 1 Pose graph construction algorithm

while (cloudcur r ent √ nextCloud ()) ! = NULL do
matrix covar i ance, tr ans f or mpai r ;
if !(register (cloudcur r ent , cloudpr evi ous , tr ans f or mpai r , covar i ance) then

skip cloud & continue to the next cloud;
end if
g r aph.addEdge (cloudcur r ent , cloudpr evi ous , tr ans f or mpai r , covar i ance);
tr ans f or ms[cloudcur r ent] √ tr ans f or ms[cloudcur r ent]§ tr ans f or m;
if isKeyframe (cloudcur r ent) then

ke y f r ame.add (cloudcur r ent);
for each ke y f r amei do

cloudcur r ent ,tr ans f or med √ tr ans f or ms[ke y f r amei].i nver se() §
tr ans f or ms[cloudcur r ent]§ cloudcur r ent ;

if register (cloudcur r ent ,tr ans f or med , ke y f r amei , tr ans f or mpai r , covar i ance)
then

tr ans f or m √ tr ans f or mpai r § tr ans f or ms[ke y f r amei].i nver se() §
tr ans f or m[cloudcur r ent];

g r aph.addEdge (cloudcur r ent , ke y f r amei , tr ans f or m, covar i ance);
end if

end for
g r aph.optimize ();
tr ans f or ms.updateTransforms (g r aph);

end if
end while
output tr ans f or ms;

3.2.2 Loop Closures

The concept of loop closures is ubiquitous in SLAM. It refers to robustly determining when
the current view of the scene exposes parts that have been seen before in the sequence and
allows for a re-alignment between selected frames such that all the errors that have been
accumulated are relaxed. Systems such as Kinect Fusion [IKH§11] can be implemented very
efficiently because they use a global structure for storing all the previous registration results.
This structure called truncated signed distance function (TSDF) is built incrementally by
including the newly registered frames in an irreversible fashion; no links are kept between the
original frame and the TSDF, and no optimization on the previous camera poses is ever done,

52

3.2. Pose Graphs for Kinect Mapping

as this would involve the reconstruction of the TSDF from scratch. As a result, the output
from Kinect Fusion is often very smooth due to the accumulation of errors in the TSDF, or
the output is completely incorrect when the user attempts to close a larger loop: the running
TSDF will look very different compared to the incoming frame, and an incorrect registration
will happen.

The RGB-D Mapping system [HKH§10] employ SIFT features extracted from the RGB images
for an initial alignment between a new keyframe with all the other keyframes using RANSAC
based on the SIFT feature matches - the advantage of this approach is that the initial poses of
the two keyframes are not taken into account, so any amount of drift can be corrected; on the
other hand, there can be false matches that can cause far away keyframes to be incorrectly
matched and lead to breaking the graph. May et al. [MFD§09] are one of the first to publish
about a SLAM system that uses only depth information from an early time-of-flight camera
(SwissRanger SR-3000). They emphasize the importance of closing loops for error relaxation
within a graph optimization framework. For this purpose, the authors used GraphSLAM
[TM05], a seminal graph optimization library for localization and mapping applications.

In conclusion, there is no way of determining if two random frames represent the same view
of the scene or not without trying to register them, without relying on local features. The only
way of closing loops in the graph is by proximity, i.e., we try to match only the frames that are
close together and have a good overlap, otherwise they are ignored (see Figure 3.4). Thus, it
becomes essential not to lose track, emphasizing the need to do a lot of local adjustments
between keyframes, guaranteeing that when we return to a previously seen part of the scene
after a few thousand frames, we are not too off so that a loop is easily identified and closed.
Our handheld scanning system does not target large scale mapping. In Chapter 5 we discuss
how planar features can be used to aid in the loop closure process, and in Section 5.5.1 we
propose a way of robustly registering two clouds with an unknown initial alignment by using
planes.

A test is performed to prove that the techniques presented in this chapter are effective. A
sequence of clouds is aligned with the naive incremental registration and with graph optimiza-
tion and the translational errors are plotted. Figure 3.5 confirms the expectations of the graph
optimization approach having a much smaller error gradient.

3.2.3 Edge Weights

As any optimization, different weights can be assigned to the constraints in order to ease the
minimizer to the global minimum. For point-to-plane ICP we discussed about weighting
the point pairs and its effectiveness, based on various heuristics such as Euclidean distance,
angular difference of the corresponding normals, sensor noise model etc. In the case of pose
graphs, this weight must reflect the importance of that certain edge in the graph. In their most
general form, these weights are actually the ≠ matrices mentioned in the basic pose graph
equation to be solved (Equation 3.1). ≠ is the information matrix (inverse of the covariance

53

Chapter 3. Graph optimization

(a) map before loop closure (b) map after loop closure

(c) graph before loop closure (d) graph after loop closure

Figure 3.4: The effect of loop closure on the graph optimizer and the resulting improved map.

Figure 3.5: Error accumulation of incremental registration as compared to graph-based opti-
mization with loop closures.

54

3.3. Optimizations

matrix).

We experimented with several options:

uniform weighting All the edges in the pose graph have the same weight; alternatively, one
could increase the weight of the edges between keyframes in order to pull lower weighted
incremental registration edges to a better local minimum. This weight is materialized as
the isotropic information matrix: ≠= w I , w 2R.

isotropic weighting based on the pairwise registration There are several heuristics on how
this can be approached:

• overlap between the two frames as a value between 0 and 1.

• condition number of the 3D (uses only the (x, y, z) coordinates of the points) or 6D
((x, y, z) and normal information) covariance matrices of the overlapping regions
of the two frames.

true covariance matrix of ICP It can be computed in multiple ways:

• based on perturbating the pose with small ¢ values in each direction, and recom-
puting the RMSE between the two clouds. In theory, 26 °1 = 63 perturbations are
needed. This becomes too computationally expensive, so only six one-dimension
perturbations are considered. The jacobian is computed as:

∑
±RMSE
±x

,
±RMSE
±y

,
±RMSE
±z

,
±RMSE
±Æ

,
±RMSE
±Ø

,
±RMSE
±∞

∏
(3.9)

and the covariance matrix becomes: C = J J T . [DRT§04] use a similar method.

• covariance as described by Gelfand et al. [GR03]. It is not the actual covariance
matrix of the ICP algorithm, but the covariance matrix representing the stability
of the match between the two clouds (check Section 2.2.2 for the mathematical
explanation).

• Censi et al. [Cen07] propose an approximation of the ICP covariance in closed-
form.

From our test runs, the method that performed better is the point cloud stability covariance
matrix, and is used in our final pipeline.

3.3 Optimizations

[SEE§12] propose a couple of methods of helping the graph optimizer converge and improve
the results. Incorrect edges in the graph can cause significant changes to the topology of the
map, which might produce additional wrong edges due to false loop closures, ending up in

55

Chapter 3. Graph optimization

a completely distorted model. A remedy for this is to remove ’bad’ edges after every graph
optimization. These edges are the ones that hold an error larger than a threshold, i.e., the
difference between the edge measurement and the optimized variable nodes that the edges is
connected too is high.

Another issue appears when the camera track is lost, as the current frame cannot be matched
to its predecessors. Endres et al. argue that a sensible solution would be to fragment the graph
by creating a new subgraph starting with the new frame and later on reconnect it if that area
of the scene is scanned again. For evaluation purposes, they do not take this approach but
add a highly uncertain edge between the frame that can not be matched and the previous one,
with the relative transformation obtained from a constant velocity motion model. From our
experiments, we decided that artificially keeping the graph connected is not a good solution
for our system, as we do not make use of local features that can be matched without initial
alignment, risking to create false edges in the graph. The conservative solution is to split the
graph and output multiple models that can later be registered together separately (see Figure
3.6).

3.4 Global ICP

On top of the incrementally-built pose graph approach presented in the previous section, we
opt for a subsequent processing step in order to improve the quality of the registration. This
approach also uses a graph optimization technique, but with a slightly different architecture:

nodes Cameras poses are nodes in the graphs, variables represented as 6D transformations
(same as for pose graphs).

edges Instead of having at most one edge between two camera nodes marking the registration
result of the two frames (relative 6D transformation along with its information matrix),
there will be multiple edges between two nodes, each edge materializing the point-to-
plane constraint between one point from the source frame and one point and its normal
from the target frame.

All in all, the optimization reduces to finding the camera poses for which the expression in
Equation 3.10 is minimized. The variables are the rotations and translations (Ri , ti) for each
camera, solved by taking into consideration all the possible point pairs between all the cloud
pairs. The weights wi , j ,k,l control which pairs of points are taken into account and which
not by setting the value to zero or to a value different than zero. The point pair selection and
non-zero weighting is done similarly to the one for pairwise registration presented in the
previous chapter, only that there is no pair-relative transformation estimation, but a single

56

3.4. Global ICP

(a) (b)

(c)

Figure 3.6: (a) and (b) show the resulting connected components of the map when the graph is
fragmented due to unregisterable frames in the middle of the sequence such as the one in (c).

57

Chapter 3. Graph optimization

(a)

Figure 3.7: 1-dimensional loop closure example: (a) the pairwise measurements between the
clouds - the incremental registration drifted: length 2+3+5+6 = 16 vs 12; (b) the absolute
positions of the nodes after the optimization - the length 3+3+3+5 = 14 is a consensus
between the incremental registration and the keyframe-based loop closure.

optimization done for all the cloud poses at once.

ar g mi nRi ,ti (
X

cloud s i

X

cl oud s j

X

poi nt s k

X

poi nt s l
[[(Ri pi ,k+ti)°(R j p j ,l +t j)]·(R j n j ,l) wi , j ,k,l]2)

(3.10)

The pose graph method explained in the previous section has the downside that the clouds
are well-aligned on a high level (i.e., the map is topologically correct), but there are noticeable
registration errors when looking at the model up-close. This is because the pose graph is
sparse in order to keep the computation burden low. Figure 3.7 explains this issue for the 1D
case: whenever a loop is closed (i.e., two keyframes are registered together successfully), the
error accumulated by the incremental registration of the frames in-between the keyframes is
relaxed along the graph based on the information matrices. Globally, the graph will go into a
better minima, but locally there is no additional process being performed between the frames
whose poses have been changed by the loop closure. This is the reasoning behind the global
ICP approach, where we do a joint optimization of all the poses at once. An example of this
situation on a real dataset is shown in Figure 3.8.

The main requirement of global ICP is that the point clouds already have good poses, as this
approach will never converge to a topologically different map (or will require a large number
of iterations to do so). Global ICP will only refine the poses such that the final map will get
closer to the correct solution. Due to its high computation complexity, we do not use all the
camera frames for this operation, but a smaller subset, 100-200 frames lead to good results.

Table 3.1 shows the improvement of the registration of a few datasets after this step.

58

3.4. Global ICP

(a) (b)

(c) (d)

Figure 3.8: The model before and after global ICP: (a) the map is topologically correct, but
looking closer, (c) there are a lot of misalignments. (b) Global ICP does not change the topology
of the map, but (d) local alignments are much better.

Dataset Pose graph Global ICP
Angular Translation Angular Translation

RMSE [degrees] RMSE [m] RMSE [degrees] RMSE [m]
freiburg1_360 12.93 0.337 9.76 0.201

freiburg1_desk 3.08 0.071 2.77 0.052
freiburg1_desk2 4.25 0.141 3.46 0.161

freiburg1_rpy 3.41 0.081 3.86 0.123
freiburg1_xyz 1.62 0.033 1.52 0.032

freiburg3_long_ 4.53 0.098 4.25 0.068
office_household

Table 3.1: RMS errors when before and after global ICP.

59

Chapter 3. Graph optimization

3.5 Conclusion

After studying how two RGB-D frames can be registered together in the previous chapter, we
looked into how to robustly align long sequences of point clouds in order to create coherent
models. As such we opted for graph optimizers to relax the errors accumulated in the over-
constrained system formed by incremental registration and the additional links between
keyframes. Finally, we saw how effective it is to switch from a sparse pose graph to a graph
that optimizes for the point correspondences.

60

4 Surface Reconstruction and Texture
Mapping

4.1 Introduction and Related Work

The next step after having computed the poses for the cameras is to generate a mesh. There
are numerous approaches for this in literature, and they can be split into two main categories:
computational geometry and implicit functions. The Alpha Shapes [EM94] and Ball Pivoting
[BMR§99] algorithms fall into the first category, but are considered impractical for point clouds
of varying point densities, which are common for indoor reconstruction scenarios. In this
same category is the GP3 algorithm [GK02], which is not suitable for our kind of data because it

61

Chapter 4. Surface Reconstruction and Texture Mapping

will use all of the vertices in the input cloud in order to triangulate the mesh, creating artifacts
in noisy areas or on surfaces that have been poorly registered.

All the methods presented so far consider the input cloud as a general point set where all the
points have equal confidence/importance in the final reconstruction. Weise et al. [WWLvG09]
propose an incremental approach where the mesh is updated with each new incoming frame
using a surfel-based technique that uses operations such as addition, removal and update,
based on confidence and visibility heuristics. The authors target GPU implementations for
their algorithm, and our CPU port proved to be too slow.

A similar approach is proposed in the KinectFusion system [IKH§11]: a truncated signed
distance function (TSDF) is updated with every new incoming frame, and a marching cubes
algorithm is finally applied on the TSDF in order to produce the output mesh. The downside
is that the algorithm uses GPU-specific operations, making the CPU port highly inefficient.
Furthermore, in order to cover large volumes (such as the ones expected in indoor scene
reconstruction) in great detail (0.5 cm resolution), the TSDF will need more memory than
what current hardware has to offer.

Because the surface reconstruction procedure should be in itself a noise reduction method,
the algorithms based on implicit functions are better suited. The Poisson [KBH06] and Smooth
Signed Distance [Tau12] algorithms approximate the mesh from points with normal informa-
tion without the need for spatial partitioning heuristics and blending by using a hierarchy of
locally supported basis functions. This reduces the problem to a sparse linear system which
can be solved efficiently. Both methods proved to offer similar results, so we decided opted for
the Poisson approach, as the implementation has a more convenient API at this time. This
choice is confirmed by similar SLAM systems [PKDB10].

Due to the fact that implicit function methods tend to hallucinate (i.e., create surfaces that
were not present in the input data), an additional post-processing step is carried out in order
to clean up the mesh. For each triangle of the mesh, the points within its circumscribing
sphere are counted. A triangle is considered valid if the local point density is higher than a
threshold. Figure 4.1 shows an example result.

After a mesh representation of the registered point cloud is created, the mesh needs to be
textured. In order to do so, we need to use the color images provided by the Kinect. Pitzer et al.
[PKDB10] present a robotics system for autonomous floor plan reconstruction, describing in
detail the way they do texture mapping on the resulting meshes. It is a 5-step process: surface
segmentation, unfolding, mesh re-parametrization, color reconstruction, and color blending.
The mesh is segmented into planar regions by region growing from random seeds and a merge
step at the end to avoid over-segmentation. PCA is used to fit a plane through the vertices of
each region and a local UV map is created for each such planar region. This UV map is just
the projection of each vertex to the underlying plane. This guarantees the fact that there will
be minimal distortions and no artifacts, but a downside is that the final model will contain
numerous texture files. Next, the mesh is re-parametrized by associating each texture pixel to

62

4.1. Introduction and Related Work

(a) (b)

Figure 4.1: Meshing a point cloud with the Poisson surface reconstruction algorithm (a)
without clipping onto the input cloud; (b) with clipping.

a 3D vertex in mesh space. This eases up the color reconstruction step where each of these
vertices will be projected into the camera view and the color copied directly to the texture (this
projection is done only after an occlusion check along the camera ray is done). The last step
is done in order to account for the discontinuities that will be present in the texture due to
the changing camera exposure settings during data acquisition. The authors formulate the
multi-view blending problem as a Poisson problem and solve it for each of the texture images
in their model.

In their publication [WJK§12], Whelan et al. discuss how to reduce artifacts when coloring
the mesh. They noticed that the surface coloring is often inaccurate around edges, being
caused by an imprecise calibration between the depth and color cameras, noise in the depth
measurements or light diffraction around objects. The approach taken is to determine if a
point is on a boundary by using a 7x7 mask, and by weighting in each color by the cosine
between the normal at the surface and the incoming camera view direction.

For the purpose of demonstrating the algorithms in this section, we shall consider the ginger-
bread house dataset shown in Figure 4.2a. This was obtained from an Asus Xtion Pro camera
and registered using our pipeline. The mesh in Figure 4.2b is obtained with the Poisson surface
reconstruction algorithm [KBH06].

This chapter starts with the straightforward method of assigning a color property on each
vertex of the mesh (not using a texture) in Section 4.2, after which we shall dive into a discussion
on uv-maps in Section 4.3, and methods of transferring the color information from the Kinect
data into the mesh in Section 4.4.

63

Chapter 4. Surface Reconstruction and Texture Mapping

(a) (b)

Figure 4.2: (a) The Gingerbread house dataset, the colored registered point cloud; (b) The
uncolored mesh computed by the Poisson surface reconstruction algorithm.

4.2 Vertex Coloring

Before going into proper texture mapping for our meshes, we shall first look into simply
coloring the vertices of the mesh. This approach avoids the need for cumbersome uv-mapping
techniques, the need to store and handle uv-coordinates and texture files. For example, the
Kintinuous [WJK§12] uses the KinectFusion truncated signed distance function to accumulate
color information for each vertex. For their 3d puppetry system [HGCA12], the authors
describe a similar vertex coloring approach as the one we employed.

The way the renderer handles such meshes is to compute the color of each pixel by interpolat-
ing the colors of the vertices of the corresponding triangle - similar to the way normals and
per-pixel brightness is computed in Phong shading. This leads to the immediate issue that
the quality of the mesh coloring will depend on the number of faces in the mesh. One of the
reasons for which texturing was introduced in the first place was to allow simulation of highly
detailed objects with a reasonably low number of polygons. In the case of vertex coloring,
not having a dense mesh leads to very blurry colors. Having sufficient polygons will solve
this issue, but will put an unnecessarily heavy burden on the renderer. Furthermore, it is not
efficient to represent planar surfaces (which are common in our indoor application domain)
with a lot of faces.

The algorithm for coloring a mesh using this approach is fairly simple: each mesh vertex
is projected into each RGB frame by using the camera intrinsics and the poses computed
with our registration pipeline with an additional occlusion check. The color of each vertex
is computed as a weighted average of the color of the pixels the vertex projects to. There are
multiple weighting heuristics, explained in Section 4.4.2. Figure 4.3 shows vertex coloring on a
high polygon mesh and its low-poly version.

64

4.3. UV Maps

(a) (b)

Figure 4.3: Vertex coloring on: (a) a mesh with a large number of faces; (b) its low-poly version

4.3 UV Maps

A UV map is a function that projects a 2D image texture to a 3D model, assigning 2D image
coordinates to the 3D vertices of a mesh.

The basic method for computing the UV mapping is by trivial per-triangle parametrization
(implementation provided in MeshLab [CCR08]). This method works by taking each triangle of
the mesh and assigning it a patch in the shape of an orthogonal isosceles triangle in the texture.
One can alleviate distortions by sorting the mesh triangles by their area and binning them into
several groups, where each group is assigned a row with a height proportional to the area in the
texture image. Figures 4.4a and 4.4b show a texture with its superimposed mesh triangles. The
problem with this approach is that the neighborhood connectivity of the triangles in the mesh
are is not taken into account when distributing the triangles in the texture image. Because the
texture image is discretized into pixels with integer coordinates and the UV values are floating
points, interpolations are done when rendering, so color bleeding from neighboring pixels in
the texture image will occur. If these pixels do not correspond to triangles that are close in the
mesh, then artifacts will be produced.

In order to overcome this issue, we looked into what professional 3D modeling software has to
offer. Autodesk Maya 2013 [Aut13] offers four ways of computing the UV mapping for a mesh
with some user interaction: planar mapping, cylindrical mapping, spherical mapping and
the so-called automatic mapping. The first three are simplistic, and are recommended to be
used only with non-complex meshes. The latter method tries to find the best UV placement by
projecting the mesh into 4 orthogonal planes that can be positioned by the user. This results
in a texture with more coherent and semantically meaningful triangle distribution, as shown
in Figure 4.4c, and the mesh does not suffer of color bleeding between triangles as observed
before (Figure 4.5).

65

Chapter 4. Surface Reconstruction and Texture Mapping

(a) (b) (c)

Figure 4.4: (a) Trivial per-triangle UV map; (b) Space optimizing trivial per-triangle UV map;
(c) Automatic mapping offered by Autodesk Maya

(a) (b)

Figure 4.5: (a) The Gingerbread house mesh where color bleeding between triangles can be
seen due to the trivial per-triangle UV mapping; (b) Issue alleviated by the automatic UV
mapping.

66

4.4. Color Transfer

4.4 Color Transfer

After having a satisfactory UV map for the mesh, we proceed to coloring the texture. There are
multiple ways in which this can be done. A very straightforward way is to transfer the color of
the registered point cloud back to the mesh by connecting the corresponding 3D vertex of each
texture pixel to its closest neighbor in the registered point cloud, as presented in Algorithm 2.

The variant explained above does not take into account the projective nature of the Kinect
images, as it treats the registered point cloud as a general unorganized cloud. The view angle
on the surface is not considered, which can lead to artifacts such as color discontinuities on
the same triangle.

For this purpose, we suggest a second solution (Algorithm 3), which projects each triangle onto
each camera image and does a per-triangle weighted average. Results can be seen in Figure
4.5. Notice in the algorithm that we are checking for occlusions before deciding whether to
use the pixel in the camera image or not for its corresponding texture triangle. This can be
done in multiple ways, the complete solution being ray tracing. Ray tracing is very expensive,
so we will make use of the fact that we know the 3D coordinates of each of our camera pixels:
we check if the 3D position in the mesh that we are assigning the camera pixel to is within a
certain distance from the 3D position of the camera pixel. This will provide good results as
long as we adapt the threshold to the scene we are processing: a threshold that is too large will
cause close surfaces to share colors, and a threshold that is too small will not account for the
deformations that the surface undertook when the point cloud was meshed. Furthermore, in
our implementation we are rejecting all the camera pixels that have no depth reading. The
data is dense enough and there are a lot of views of the same surface during a frame sequence,
so discarding pixels will not leave uncolored areas.

Algorithm 2 The color transfer algorithm using the registered point cloud

for each mesh triangle do
Compute homography from (u, v) texture coordinates to the barycentric coordinates of

the triangle
end for

Set up kd-tree for the registered point cloud

for each texture pixel do
Compute the triangle barycentric coordinates for the pixel center
Compute the 3D coordinates using the barycentric coordinates
Find nearest neighbor point p in point cloud
Color pixel with the color of p

end for

67

Chapter 4. Surface Reconstruction and Texture Mapping

Algorithm 3 The color transfer algorithm using camera projections

Generate the list of texture pixels corresponding to each mesh triangle
Dilate each pixel region by 1 pixel in each direction (to avoid floating point approximations)
for each camera image do

vi ew_di r ect i on √ T (camer a)§V ector (0,0,1) . T - camera transformation matrix
for each mesh triangle (a, b, c) do

nor mal √ (a°c)£(b°c)
k(a°c)£(b°c)k

cos_vi ew_nor mal √ vi ew_di r ect i on ·nor mal
if cos_vi ew_nor mal ∑ thr eshol d then

process next triangle
end if

p_[a,b,c] √ P (camer a)§T (camer a)§ [a,b,c] . P camera projection matrix
Compute H - 2x3 affine homography matrix from the texture pixels to the camera

image pixels

for each pixel in the texture image corresponding to the current triangle do
pr o j _[u, v] √ H § [u, v]
if occl usi on_check(camer a(pr o j _[u, v]) 6= pass) then

continue to next pixel
end if
pi xel _camer a_color √ bi l i near _i nter pol ati on(pr o j _u, pr o j _v)
textur e(u, v) √ pi xel _camer a_color§cos_vi ew_nor mal+textur e(u,v)§wei g ht (u,v)

wei g ht (u,v)+cos_vi ew_nor mal
wei g ht (u, v) √ wei g ht (u, v)+ cos_vi ew_nor mal

end for

end for
end for

68

4.4. Color Transfer

(a) (b) (c)

Figure 4.6: Perspectively correct texture mapping: (a) flat; (b) texture mapping using affine
transformation; (c) texture mapping using perspective transformation.

(a) (b)

Figure 4.7: (a) Affine texturing and (b) Perspectively correct on the Gingerbread house dataset.

4.4.1 Perspectively Correct Texture Mapping

The solution we proposed computed a homography between the triangle in the texture plane
and its corresponding triangle in each image plane, resulting in an affine transformation. This
does not take into account the distortion of the texture introduced by not doing a perspective
projection (See Figure 4.6 for a visualization of the effects of the two methods).

In order to correct for the foreshortening effects in the texture, the 3D coordinates for each
pixel in the texture map are computed. This is done by interpolating between the mesh
coordinates of each vertex of the face which the 2D pixel corresponds to. Then, for each
camera image, instead of computing the UV location in an affine way, we project the 3D points.
This dramatically improves the quality of the texture reconstruction, as exemplified on the
Gingerbread house in Figure 4.7.

4.4.2 Heuristics for Weighting the Per-texel Contributions

The main advantage of averaging the colors for each texel is that there will be no sharp changes
between neighboring faces in the mesh and the variance of the light during acquisition will be

69

Chapter 4. Surface Reconstruction and Texture Mapping

(a) (b)

Figure 4.8: (a) Texture mapping without averaging - taking a single camera image sample for
each texel - presents a lot of artifacts; (b) Texture mapping with weighted averaging by the
triangle area in the camera image.

corrected for. The possible imprecisions in the registration process and erroneous meshing
can cause the projected camera image patches to be misaligned on the mesh texture. The
averaging approach fixes this, but causes blur.

Another source of blur is when a triangle from a frame where it does not have enough visibility
(i.e., at a steep angle or far away from the object) is projected to the texture. In order to
minimize this blur, we propose three weighting strategies:

• weighting based on a function of the angle between the surface normal and the viewing
direction of the camera (as in Algorithm 3)

• weighting using a function of the distance of the 3D point on the mesh triangle to the
camera plane.

• a linear combination of the previous two.

• weighting based on a function of the pixel area of the triangle in the camera image. This
has proven to be the best performer, as it guarantees that the larger contributions come
from the triangles with the better visibility.

By not averaging, one can increase the sharpness of the texture by taking a single image
source for each triangle. Figure 4.8 visualizes the result when taking the image where the
mesh triangle projection had the largest area. As expected, there are discontinuities between
neighboring triangles in terms of features and image brightness. Another similar approach we
tried and presented similar issues was to take the median color for each texel from the total
set of contributions corresponding to it. A rather complex post-processing step is needed to
fix these artifacts, and this is out of the scope of this work.

70

4.5. Conclusion

4.5 Conclusion

The point cloud obtained after registering sequences of RGB-D frames is not suitable for
efficient visualization and usage in applications such as computer games or CAD. The standard
data representation for such scenarios is that of meshes. As such, we looked into how we can
convert large, discrete point clouds into continuous surfaces. Next, we tackled the problem of
coloring these meshes, discussing various issues faced in the process.

71

5 Geometric Features, Planes

5.1 Introduction

Sparse local features have been proven to be useful for registering frames with no initial
alignment, thus aiding in detecting loop closures in large maps. In most of the literature,
these features are usually extracted from color images. In his work [RBB09], [RBMB08], Rusu
proposes a number of feature descriptors based only on the geometry of the point clouds,
which cumulate local neighborhood information about points and their normals in compact
histograms. Other such descriptors include SHOT [TSDS10], NARF [SRKB11] and spin images

73

Chapter 5. Geometric Features, Planes

(a) (b)

Figure 5.1: High level of noise in the Kinect data, making it impossible to reliably fit cylinders
in the scans.

[JH98]. All of these features were introduced in the context of laser scanning, where the data
is a lot more dense and precise as compared to the Kinect cameras we are dealing with. As
such, the requirements for our choice of geometric features are: speed, robustness to high
levels of noise and invariance to the distance from the sensor (i.e., local point density). We
have experimented with the PFH and FPFH descriptors available in PCL and concluded that
they offer good performance only around the sweet spot of the sensor, between 0.8 and 1.5
meters. This is not satisfactory for our purposes, as we are expecting that most of the data
collected for indoor mapping will be at a depth of around 3 meters.

Having eliminated this possibility, we turn towards the idea of semantic mapping introduced
by Rusu [Rus]. The author detects geometric primitives (cylinders, spheres, planes etc.) in laser
scans in order to add semantic meaning to the scanned environment: cups, doors, handles,
shelves etc. Due to the high noise of the RGB-D sensors, tackling cylinders and spheres is
difficult (see Figure 5.1). Rusu encourages the idea that indoor environments are mostly planar
by doing an analysis on the distribution of his feature histograms in typical household scans.
As such, this chapter will cover possible applications of planar features for the purpose of
indoor mapping and modeling.

The sensors we are using only work indoors, so we can safely assume that in indoor mapping
scenarios planes will be present in relatively large numbers. Object modeling scenarios also
benefit from the usage of planes, as the objects to be modeled will sit on some kind of plane
most of the times (e.g., desk, table, floor). Planes are easy to characterize: infinite planes are
defined by 4 floating point values (the normal and the distance along the normal). In order to
describe the shape of a planar surface, one can store the inlier indices from each of the point
clouds that contribute to the plane. This option requires a lot of memory, so it is simplified by

74

5.2. Plane Extraction

reducing the descriptor to only the contour points, or the planar polygonal mesh for rapid
visualization. Planes are relatively straightforward to detect in point clouds, and easy to match
between consecutive frames.

There are multiple authors that proposed using planes extracted from point clouds in various
ways. Nüchter et al. [NH08] mark planes as representing walls, floors, doors or ceilings in their
laser scanned point cloud maps. Rusu et al. [RMB§09] use planar surfaces to add semantics
to the point cloud maps, such as defining various fixtures (e.g., shelves, drawers) in indoor
environments. Planar features are used for aligning individual point clouds in [PBV§10], and
then globally optimizing a pose graph. Trevor et al. [TRC12] propose the usage of planes as
landmarks in a graph optimization framework. For their results they used both 3D and 2D
planes, captured by an RGB-D Asus Xtion Pro camera and a Hokuyo UTM-30 2D laser scanner
which offers more precision and significantly larger range, and aided by the odometry of a
Segway robot base. We will use some of their ideas in our system, but in a less constrained
handheld camera context.

Planes become useful when used for aligning frames in various transformation estimation
setups, can be used as landmarks for aiding graph optimizers to converge to the global mini-
mum, or for constraining the ICP algorithm. Each of the sub-applications will be discussed
in the sections of this chapter, after the methods for extracting, and manipulating clouds are
presented.

5.2 Plane Extraction

We propose two ways of extracting planes from point clouds: an approach based on region
growing, and one using RANSAC. Both come with advantages and disadvantages.

The first one uses the organized nature of the Kinect point clouds, as it generates random
seed points in the image and then using the grid information, it grows regions from each seed
point along the direction of the smallest gradient in terms of normal orientation, curvature
and distance between points. An efficient implementation of this approach reaches realtime
frame rates (30 Hz) with raw Kinect images (640x480), but the quality degrades a lot if lower
resolution images are used. Furthermore, this method can output both the set of inlying
points and the contour of the polygonal region. The main downside of this approach is that if a
surface has a higher gradient of any kind, the algorithm will stop growing the respective region,
making the parameter tuning very difficult, especially when considering the high amounts of
noise present in the data. Figure 5.2 showcases two situations that are difficult to isolate.

The second method is based on RANSAC, and treats the frame as an unorganized point
cloud. The sequence of operations is presented in Algorithm 4. The first part is the classic
RANSAC approach for fitting a plane to a point set. Note that the number of iterations K
can be determined using probabilities (Equation 5.1). After the inliers have been computed,
an Euclidean clustering step is applied in order to take into consideration only the largest

75

Chapter 5. Geometric Features, Planes

Figure 5.2: In the 2D examples above, the upper segment should be considered a single planar
surface (and not two), and the lower segment should be eliminated as being non-planar. By
using the region growing plane extraction approach it is hard to satisfy both cases, as the
algorithm never computes per-cluster plane parameters during the region growing phase. It is
only done once at the end. This means that the curvature gradient parameter should be large
enough to allow the growing to go over the bump in the top segment, but small enough to not
allow the lower segment to be grown at all.

component of the inliers. This is done because the RANSAC algorithm has no notion of
neighboring points in the input cloud, and it considers disparate regions as being a single
surface if they fit the same plane equation (e.g., desk tops at the same height in an office). We
start from a set of seed points and grow and merge regions based on the distances between the
3D points (a normal deviation threshold can also be added). Figure 5.3 shows the effects of this
step. Next, the plane parameters of this cluster are refined. This is done in an iterative fashion
by computing the normal using principal component analysis (PCA), and then eliminating the
points that have a projection distance to the new model larger than a multiple of the standard
deviation. At the end of the process we are left with a set of planar inliers with less noise. Using
them as such would be inefficient in terms of computation and storage performance, so we
aim for a polygonal representation. To do so, we first compute the alpha shapes of the 2D
projection of the inliers on the plane using the QHull library [BDH96]. This step will output
a dense contour for each plane (thousands of points), so it needs to be simplified to reduce
the contour to tens of points (See Figure 5.4 for the differences). For visualization purposes,
the contours can be triangulated. The sequence of operations presented above extracts the
largest plane in the point cloud. In order to extract the next largest plane, the inlier points of
the previous plane are taken out of the point set and the whole procedure is repeated on the
remaining points.

K = log(1°p)
log(1°w n) , where:

n ° the minimum number of points necessary to compute the model (3 for planes)
p ° probability that we select only inliers when choosing n random points from the set.
w ° the probability of choosing an inlier when choosing one random from the entire set.

= number o f i nl i er s
poi nt set si ze

76

5.3. Plane Tracking

(a) (b)

Figure 5.3: Clustering the planar inliers helps concentrate only on a single surface at a time.
(a) Before clustering, raw output from the RANSAC plane fitting; (b) The largest cluster only.

(5.1)

Given 3 points v1, v2, v3:
n = (v1°v2)£(v3°v1)

||(v1°v2)£(v3°v1)||
d = °n ± v1

(5.2)

Figure 5.5 shows an example where the RANSAC plane extraction pipeline performs better as
compared to the region growing method. RANSAC produces contours that cover the entire
planar surfaces and are more consistent across frames. The downside is that it is slower, but
we went for precision in our system, so this is what we will use.

5.3 Plane Tracking

There are two ways in which plane tracking is employed in the pipeline: by projecting inliers
from one frame to the other and by computing the actual intersection area of the candidate
planes.

The first approach can be used when the relative transformation between the two frames is
small. For each plane in the source frame, we count how many of its inliers hit a plane in
the target frame by looking at the same uv-coordinates. Two planes are paired if the source
plane hits the target plane the most and vice-versa (maximums in both directions), and the
average number of hits from one to the other is above a certain threshold. This method is
computationally cheap given that we work on downsampled frames, and it is well suited for

77

Chapter 5. Geometric Features, Planes

(a) (b)

Figure 5.4: Planar polygon contour (a) alpha shapes; (b) alpha shapes and contour simplifica-
tion, leading to a much compact representation of the same polygonal surface.

Algorithm 4 Plane extraction algorithm using RANSAC
repeat

Choose 3 points at random from the point set
Compute the plane parameters using Equation 5.2
for each other point v in the cloud do

if v ±n +d ∑ thr esh then
i nl i er s √ i nl i er s +1

end if
end for
if i nl i er s > maxi nli er s then

maxi nli er s √ i nl i er s
par amsbest √ (n,d)

end if
until k < K

Euclidean clustering to take the largest connected component.
for m iterations do

Compute the plane parameters for the remaining inlier set using PCA
Compute the standard deviation æ for the projection distance from each point to the

plane
Eliminate the points with distances larger than Æ§æ

end for

Compute the convcave hull of the inliers.
Simplify the contour.

78

5.4. Planes as Landmarks in Graph Optimization

(a) RANSAC with contour post processing (b) region growing

Figure 5.5: The two plane extraction approaches we proposed.

tracking planes between consecutive frames, given that the camera motion was not very fast
and the dataset was recorded at full frame rate (30 Hz).

The second method is to be used when computing the overlap between planes in world
coordinates. It begins by checking if the equations of the two candidate planes are within
thresholds in terms of normal deviation and displacement along the normal. If this test is
passed, then the contour of the candidate source plane is projected onto the target plane.
Another check is done on the root mean square of the projection distances, and some false
positives are eliminated. Next, the intersection of the two 2D polygons is computed using the
Clipper library [Joh], which is an open-source implementation of [Vat92]. The decision behind
using this library against a more popular framework such as Boost Polygon [boo] is that it
allows for polygons with self-intersections and it was proven faster in various performance
benchmarks. The pair of polygons is considered to be in correspondence if the area of the
intersection is large enough.

Our plane tracking pipeline works by extracting the planes in each incoming frame, finding
the correspondences against the previous frame, then checking for other correspondences
against all the planes collected so far in the world frame. All the corresponding planes are
updated as follows: the source plane contour is projected to the target plane, and the union of
the two 2D polygons is computed, then un-projected back to 3D, forming the contour of the
new polygon.

5.4 Planes as Landmarks in Graph Optimization

The first paper to propose augmenting the extended Kalman filter (EKF) state vector with
landmark positions was [SC86], but SLAM implementations today evolved to using graph
optimization techniques. Folkesson uses a graph representation to optimize for both the
landmarks and robot trajectory in [FC04].

79

Chapter 5. Geometric Features, Planes

Along those lines, Trevor et al. [TRC12] extend the GTSAM framework [DK06] to allow for
planes to be used as landmarks. After extracting each plane and refining its parameters, a
constraint is added to the graph between the camera node and the plane landmark. This
constraint models the plane parameters in the current frame. The graph is then optimized for
both the poses of the cameras and the parameters for each plane in the world frame. The set
of equations 5.3 show the error function that is used for the edge and the Jacobians to aid the
convergence of the optimizer.

e =
"

RT §~n
~n ± t +d

#

°
"
~nm

dm

#

±h
±Xr

=

2

66664

0 °nx ny 0 0 0
nx 0 °nz 0 0 0
°ny nz 0 0 0 0

0 0 0 nx ny nz

3

77775

±h
±nmap

=
"

[R] ~0
~X T

r 1

#

(5.3)

By using the plane tracking and merging techniques presented in the previous sections with
the graph constraints allows for effectively closing loops without the need of local feature
descriptors. Figure 5.6 depicts the results of our system with and without plane features. This
dataset was especially difficult due to the lack of geometric features in the scans. Planes aided
the graph optimizer not to diverge, and it ended up in a reasonable local minima, allowing the
map to be further improved using global ICP.

On top of the constraints between camera poses and plane parameters, we propose to add to
constraints between the planes themselves. This idea is based on the fact that most indoor
environments contain planar surfaces that are either parallel to each other or orthogonal to
each other: walls are orthogonal to floors and ceilings, walls either meet under 90 degrees at a
corner or are opposite walls, in which case they are parallel, tables and shelves are parallel
to the ground etc. As such, we add a refinement step in our system at the end of the pipeline
where all the angles between the normals of all pairs of planes are calculated and the ones
that are close to being orthogonal or parallel are enforced to snap using an edge in the graph,
with the error function and Jacobians in Equation 5.4. In our experiments these additional
constraints did help, the effects being most visible in top-down views of rooms, as in Figure

80

5.5. Frame to Frame Alignment using Planes

(a) (b)

Figure 5.6: The proposed reconstruction pipeline (a) based only on point cloud registration;
(b) with additional camera-plane constraints in the graph optimization.

5.7. The architecture of the graph becomes as shown in Figure 5.8.

e = ~nsr c
T ~nt g t °Æ

±e
±Psr c

=
h

nt g t x
nt g t y

nt g t z
0
i

±e
±Pt g t

=
h

nsr cx nsr c y nt g t z
0
i

(5.4)

Another advantage of this approach is that the global planes are optimized independently
from the camera poses, meaning that we have a consistent plane map at the end. This map is
useful as a low-cost representation of the environment or in robotics-oriented tasks such as
collision detection, identifying stable locations where objects can be placed safely (e.g., tables,
desks). Figure 5.9 shows the differences between the point cloud map, the plane inliers and
the globally-optimized polygonal planes planes.

5.5 Frame to Frame Alignment using Planes

In the following section, three methods for aligning individual frames by using planar features
will be introduced.

81

Chapter 5. Geometric Features, Planes

(a) (b)

Figure 5.7: Top-down view of a room (a) without using the additional orthogonality and
parralelism constraints. (b) after imposing them and doing an additional graph optimization
step - notice.

5.5.1 RANSAC and Rendered Depth Maps

We propose a novel approach for aligning two frames by using planes in a RANSAC framework.
Due to the nature of the algorithm, no initial alignment is required, allowing for registering
non-neighboring frames easily. The steps are shown in Algorithm 5. The algorithm expects
a set of source and target planes, which are extracted and processed using the methods
presented in the previous sections. The first pair of planes is selected at random from the
source planes set and target planes set, respectively. The next two pairs are selected such that
the angles between planes 0-1, 1-2, and 0-2 are similar for both the source and target planes,
respectively. This is inspired by the checks usually done in point-based RANSAC where the
distances between the points in each frame are imposed to be similar.

The transformation is computed in two stages, and needs a minimum of three plane corre-

82

5.5. Frame to Frame Alignment using Planes

Figure 5.8: Complete graph architecture for mapping using plane features. The circles rep-
resent the camera nodes (6D world coordinates) and the green squares are plane nodes (3D
world coordinates). There are three types of edges: camera-to-camera (relative 6D pose),
camera-to-plane (3D plane parameters in the camera frame), and plane-to-plane (relative 1D
angle between the normals of the planes.

(a) (b) (c)

Figure 5.9: The proposed reconstruction pipeline (a) based only on point cloud registration;
(b) with additional camera-plane constraints in the graph optimization.

83

Chapter 5. Geometric Features, Planes

spondences. First, the rotation is estimated using singular value decomposition:

Nsr c =

2

66664

nsr c1x nsr c2x . . . nsr cmx

nsr c1y nsr c2y . . . nsr cmy

nsr c1z nsr c2z . . . nsr cmz

3

77775

Nt g t =

2

64
nt g t 1x

nt g t 2x
. . . nt g t mx

nt g t 1y
nt g t 2y

. . . nt g t my

nt g t 1z
nt g t 2z

. . . nt g t mz

3

75

H = Nsr c N T
t g t

H = UßV §

) R = V U T

(5.5)

The transformation for plane parameters is computed from the point transformation as
follows:

T =
"

R t
0 1

#

Tpl ane = T °T =
"

R 0
°t T R 1

(5.6)

The translation is then isolated:
"

R 0
°t T R 1

"
nsr c

dsr c

#

=
"

nt g t

dt g t

#

°t T R nsr c +dsr c = dt g t

(R nsr c)T t = dsr c °dt g t

(5.7)

and then computed using LU decomposition for A x = b, with:

A = (R Nsr c)T

b =

2

66664

dt g t 1
°dsr c1

dt g t 1
°dsr c1

. . .
dt g t m

°dsr cm

3

77775
(5.8)

After the transformation is computed from the three plane correspondences, the transformed
triangulation of the source planes is rendered to obtain a low resolution depth map (40x30

84

5.5. Frame to Frame Alignment using Planes

Figure 5.10: Example of the low resolution renderings used by the plane RANSAC algorithm
for computing the number of inliers for a candidate source transformation.

offered a good balance between precision and performance, see Figure 5.10). This depth map
is then compared dexel by dexel with the target depth map rendering and the number of inliers
is counted. This will represent the score of the current transformation that will be used in the
RANSAC iterations.

Figure 5.11 shows two example runs of the algorithm. This approach was found to fail when
two frames have multiple valid relative transformations that cannot be differentiated by
using only planes, as shown in Figure 5.12, and we will address these special cases in future
work. Performance-wise, the current implementation needs considerable time to align two
frames (in the seconds range). We believe that this approach is promising, as it can be heavily
optimized or used as a building block for a more complex algorithm.

5.5.2 Joint Point and Plane Optimization

Planes could also be used to influence the convergence of the ICP algorithm. This is inspired
by mapping systems that use sparse RGB features in a joint optimization with point-to-point or
point-to-plane dense correspondences. Point correspondences can be determined using any
tuned sampling, correspondence estimation and rejection pipeline. Plane correspondences
are found by either of the two methods explained in Section 5.3, but the second one is more
suitable as the overlapping area can be used as a weighting factor in the error function. The
transformation is solved for by using the Levenberg Marquardt approach on the following
error function, where N is the number of point correspondences and M the number of plane
correspondences. Æ adjusts the importance of the point matches against the plane matches
and Ø is a parameter that weights the distance component of the planes.

E =Æ
NX

i=0
[(pi °qi)±ni]2 + (1°Æ)

MX

i=0
wi [(1.0°nsr ci ±nt g t i

)+Ø(dsr ci °dt g t j
)]2 (5.9)

In order to aid the convergence speed, one can start the algorithm with a larger plane weighting

85

Chapter 5. Geometric Features, Planes

Algorithm 5 Frame registration using planes in a RANSAC framework and rendered depth
maps

repeat
Choose one plane Psr c1 at random from the source plane set
Choose one plane Pt g t 1

at random from the target plane set
Choose plane pair (Psr c2 ,Pt g t 2

)
Æ1 √ acos[nor mal (Psr c1)±nor mal (Psr c2)]
Æ2 √ acos[nor mal (Pt g t 1

)±nor mal (Pt g t 2
)]

if ||Æ1 °Æ2|| >¢Æ then
continue

end if
Choose plane pair (Psr c3 ,Pt g t 3

)
Æ3 √ acos[nor mal (Psr c1)±nor mal (Psr c3)]
Æ4 √ acos[nor mal (Pt g t 1

)±nor mal (Pt g t 3
)]

if ||Æ3 °Æ4|| >¢Æ then
continue

end if
Æ5 √ acos[nor mal (Psr c2)±nor mal (Psr c3)]
Æ6 √ acos[nor mal (Pt g t 2

)±nor mal (Pt g t 3
)]

if ||Æ5 °Æ6|| >¢Æ then
continue

end if
Compute the transformation T using the three plane pairs
Tpl ane √ T °T

Render the source planes transformed with Tpl ane .
i nl i er s √ the number of inliers between the rendered source and target depth maps
if i nl i er s > maxi nli er s then

maxi nli er s √ i nl i er s
Tbest √ T

end if
until k < K

86

5.5. Frame to Frame Alignment using Planes

(a)

(b)

(c) (d)

Figure 5.11: Two examples of frames with bad initial alignments (a), (b), and the results when
aligned with our proposed plane RANSAC algorithm: (c), (d).

87

Chapter 5. Geometric Features, Planes

Figure 5.12: Example where the planes RANSAC method fails, as there are three ways in
which the two frames representing one corner of a room can be aligned, and they cannot be
discriminated by using just planes.

Pairs Number of iterations
points only points and planes

1 6 6
2 19 11
3 30 200 (did not converge

Table 5.1: Joint point and plane optimization benchmark.

in order to roughly align the frames and then decrease it for more precise registration by using
only the points. Table 5.1 shows the improvements of this method on the three sample point
cloud pairs used in our previous benchmarks.

5.5.3 Plane-Constrained ICP

In order to reduce the number of degrees of freedom that the transformation estimator has
to deal with, the relative transformation between two frames can be locked down from six
to three degrees of freedom by using plane features. The best plane correspondence (the
pair of planes whose overlap is largest) is found between the plane sets of the two frames.
Next, the transformation for which the normal of this plane is aligned to the z-axis and the
origin is at the centroid of the contour of the planar region is computed for each of the two
frames. The plane inliers are removed from each frame as they will not contribute to the error
function, reducing the number of correspondences and errors that have to be computed,
especially for typical indoor environment sequences, as the camera is pointed towards walls
or the floor most of the time. By bringing both frames to this common coordinate system, the
only unknowns that need to be estimated are the translation in the XY-plane and the rotation

88

5.6. Conclusion

around the Z-axis. This is done using an LM optimization with a point-to-plane error metric
between the 3D point pairs that only solves for the remaining three relative pose components.

5.6 Conclusion

In this chapter we have looked into approaches for describing point clouds with local features.
From literature and our experiments we reached the conclusion that 3D features that were
proposed in the context of laser scanning are not applicable to current RGB-D cameras due to
the noisy nature of the data. As a consequence, we investigated the usage of planar polygons
as feature descriptors for various tasks as aligning frame pairs or as landmarks in graph
optimization frameworks.

89

6 Results, Benchmarks and Future
Work

6.1 TUM Datasets Benchmarks

As mentioned in the introductory Section 1.4, Sturm et al. [SEE§12] provide researchers with a
large collection of datasets acquired with a Kinect in different situations, along with ground
truth pose information and a suite of tools for standardizing the error computations. [SB12],
[EHE§12] benchmark their RGB-D mapping systems against the same sequences, allowing for
easy comparison of the performance of our work. Because of the fact that the authors of each
of the aforementioned publications use different subsets of the collection for the evaluation
and also different error representations, we will compare our results with theirs in separate
tables: 6.1 and 6.2.

Some of the datasets provided have non-static scenes that contain people moving around etc.
The pipeline we propose proves robust to small motions such as the sitting* datasets, but fails
when larger motions are introduced such as people walking. See Table 6.3 for more details.

As expected, our system did have problems with some datasets due to the fact that there are
frames in the sequences that do not contain enough geometric information to easily register
them without the use of colors. For this reason, we ran these datasets with the pipeline that
uses planar features and the results improved, as shown in Figure 6.3.

On top of the registration, our system can also generated textured meshes. Figure 6.4 shows
three examples from the TUM collection.

6.2 Our own datasets

Below are screenshots of meshes obtained from registering our own collection of datasets.
The sequences ranged from 1000 to 3000 frames.

91

Chapter 6. Results, Benchmarks and Future Work

Dataset RMS ATE [m]
ours other [SB12]

freiburg1_360 0.113 0.069
freiburg1_desk2 0.038 0.049
freiburg1_desk 0.038 0.043
freiburg1_plant 0.055 0.026
freiburg1_room - 0.069

freiburg1_rpy 0.031 0.027
freiburg1_teddy 0.109 0.039

freiburg1_xyz 0.016 0.013
freiburg2_desk - 0.052
freiburg2_rpy 0.026 0.024
freiburg2_xyz 0.018 0.020

Average 0.0493 0.0319

Table 6.1: The RMS ATE of our system against [SB12].

Dataset RMSE translation [m] RMSE rotation [±]
our RGB-D Mapping our RGB-D Mapping [EHE§12]

freiburg1_360 0.102 0.103 5.85 3.41
freiburg1_desk2 0.157 0.102 4.26 3.81
freiburg1_desk 0.056 0.049 3.44 2.43
freiburg1_floor - 0.055 - 2.35
freiburg1_plant 0.084 0.142 6.74 6.34
freiburg1_room - 0.219 - 9.04

freiburg1_rpy 0.114 0.042 3.78 2.50
freiburg1_teddy 0.155 0.138 7.19 4.75

freiburg1_xyz 0.033 0.021 3.00 0.90
Average 0.1001 0.0852 4.894 3.448

Table 6.2: The RMS RPE of our system against [EHE§12].

Dataset RMSE ATE [m] Observations
freiburg3_sitting_halfsphere 0.035 Two persons discussing at a desk, with fair

head and hand motions
freiburg3_sitting_rpy 0.090 Same as above, different camera motion
freiburg3_sitting_xyz 0.042 Same as above, different camera motion

freiburg3_sitting_static 0.009 Same as above, camera is almost static
freiburg3_walking_static 1.336 People walking in front of the camera with

large occlusions, slight camera movement
freiburg3_walking_xyz 0.952 Same as above, camera moves

freiburg2_desk_with_person 0.483 Person walks in the scene half-way during
the recording

Table 6.3: The behavior of our system when faced with non-static scenes.

92

6.2. Our own datasets

(a) freiburg1_plant map (b) freiburg1_plane track

(c) freiburg1_rpy map (d) freiburg1_rpy track

(e) freiburg3_large_cabinet map (f) freiburg3_large_cabinet track

Figure 6.1: Screenshots of the registered point cloud maps along with their tracks plotted
against ground truth on some of the RGB-D TUM datasets.

93

Chapter 6. Results, Benchmarks and Future Work

(a) freiburg3_long_office_household map (b) freiburg3_long_office_household track

(c) freiburg3_teddy map (d) freiburg3_teddy track

(e) freiburg1_desk map (f) freiburg1_desk track

Figure 6.2: Screenshots of the registered point cloud maps along with their tracks plotted
against ground truth on some of the RGB-D TUM datasets.

94

6.2. Our own datasets

(a) freiburg2_desk map (b) freiburg2_desk track

(c) freiburg2_desk map with planes (d) freiburg2_desk track with planes

Figure 6.3: The improvements using planar features in the pipeline

95

Chapter 6. Results, Benchmarks and Future Work

(a) freiburg1_plant

(b) freiburg3_long_office_household

(c) freiburg3_teddy

Figure 6.4: Meshes of TUM datasets.

96

6.2. Our own datasets

(a) car, view 1 (b) car, view 2

(c) PR2 robot, view 1 (d) PR2 robot, view 2

(e) person, view 1 (f) person, view 2

Figure 6.5: Mesh results of our own datasets.
97

Chapter 6. Results, Benchmarks and Future Work

(a) living room, view 1

(b) living room, view 2

(c) room 1

(d) room 2

Figure 6.6: Mesh results of our own datasets.

98

6.2. Our own datasets

(a) gingerbread house

(b) fruits

(c) plush toy

Figure 6.7: Mesh results of our own datasets.

99

Chapter 6. Results, Benchmarks and Future Work

6.3 Future Work

As we have seen, state-of-the-art RGB-D mapping software gets great benefit from using local
feature descriptors from color images (under controlled lighting conditions). We concluded
that existing geometric local features are too sensitive to the noisy nature of current commer-
cial RGB-D cameras. We are planning to work on developing 3D features that are adapted to
this new type of sensing data.

In a mapping system, the option of offering feedback to the user during the acquisition time is
valuable, informing the operator about possible locations of the scene where data is missing
or where misalignments occurred. Building on this, one can also think of allowing the user to
make manual adjustments of the model during acquisition, in case the registration fails.

During this work, we have looked into using multiple cameras for mapping the same scene
synchronously. The proposed architecture currently allows for that, as one can do incremental
frame to frame registration independently for each camera and then do loop closures and
error relaxation on a common graph representation of the scene.

An issue we noticed during evaluation is the lack of robustness under the presence of large
moving objects in the scene. This cannot be solved by simply considering the points corre-
sponding to the objects as inliers, but needs a semantic approach. We will look into this in the
future.

6.4 Conclusions

In this thesis we have investigated methodologies for enabling simultaneous localization and
mapping with handheld consumer-level RGB-D cameras. Benchmarks have been done on
ways of registering pairs of point clouds, and we have explained the advantages of choosing an
approach for each step of the pipeline. Next, we looked into how the maps can be represented
as graphs and improved by loop closure and graph optimization techniques. After a precise
point cloud of the scene is obtained, surface reconstruction is employed in order to create
a mesh that allows for more efficient visualization. Going forwards, we inspected ways of
transferring the color information from the camera frames to the model. After these steps are
done, we obtain the final colored mesh which can immediately be used in various applications
such as CAD or computer games. However, in order to improve robustness, we made use
of assumptions about typical indoor scenes. These are focused on the heuristic that indoor
scenes are mostly planar, and have properties similar to a Manhattan World (planes are parallel
or orthogonal to each other). As such, we introduced novel ways in which planar polygons are
a medium for registering frames and for improving the robustness in the graph optimizer.

100

Bibliography

[ABCo§03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA C. T.: Com-
puting and rendering point set surfaces. IEEE Transactions on Visualization and
Computer Graphics 9 (2003), 3–15.

[AHB87] ARUN K. S., HUANG T. S., BLOSTEIN S. D.: Least-squares fitting of two 3-d point
sets. IEEE Trans. Pattern Anal. Mach. Intell. 9, 5 (May 1987), 698–700.

[asu] Asus Xtion PRO. http://www.asus.com/Multimedia/Xtion_PRO/.

[Aut13] AUTODESK: Maya. http://usa.autodesk.com/maya/, 2013.

[BDH96] BARBER C. B., DOBKIN D. P., HUHDANPAA H.: The quickhull algorithm for
convex hulls. ACM Trans. Math. Softw. 22, 4 (Dec. 1996), 469–483.

[BM92] BESL P., MCKAY N.: A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239–256.

[BMR§99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA C., TAUBIN G., MEMBER

S.: The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on
Visualization and Computer Graphics 5 (1999), 349–359.

[boo] Boost polygon library. http://www.boost.org/doc/libs/1_53_0/libs/polygon/
doc/index.htm.

[CCR08] CIGNONI P., CORSINI M., RANZUGLIA G.: Meshlab: an open-source 3d mesh
processing system. ERCIM News, 73 (April 2008), 45–46.

[Cen07] CENSI A.: An accurate closed-form estimate of ICP’s covariance. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA) (Rome,
Italy, April 2007), pp. 3167–3172.

[CM92] CHEN Y., MEDIONI G.: Object modelling by registration of multiple range images.
Image Vision Comput. 10, 3 (Apr. 1992), 145–155.

[DF01] DEPARTMENT A. F., FITZGIBBON A. W.: Robust registration of 2d and 3d point
sets. In In British Machine Vision Conference (2001), pp. 411–420.

101

http://www.asus.com/Multimedia/Xtion_PRO/
http://usa.autodesk.com/maya/
http://www.boost.org/doc/libs/1_53_0/libs/polygon/doc/index.htm
http://www.boost.org/doc/libs/1_53_0/libs/polygon/doc/index.htm

Bibliography

[DHR§11] DU H., HENRY P., REN X., CHENG M., GOLDMAN D. B., SEITZ S. M., FOX D.:
Interactive 3d modeling of indoor environments with a consumer depth camera.
In Proceedings of the 13th international conference on Ubiquitous computing
(New York, NY, USA, 2011), UbiComp ’11, ACM, pp. 75–84.

[DK06] DELLAERT F., KAESS M.: Square root sam: Simultaneous location and map-
ping via square root information smoothing. International lJournal of Robotics
Research (IJRR) 25, 12 (2006), 1181. Special issue on RSS 2006.

[DRT§04] DIEBEL J., REUTERSWARD K., THRUN S., DAVIS J., GUPTA R.: Simultaneous
localization and mapping with active stereo vision. In Intelligent Robots and
Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference
on (sept.-2 oct. 2004), vol. 4, pp. 3436 – 3443 vol.4.

[EHE§12] ENDRES F., HESS J., ENGELHARD N., STURM J., CREMERS D., BURGARD W.: An
evaluation of the RGB-D SLAM system. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA) (St. Paul, MA, USA, May 2012).

[ELF97] EGGERT D. W., LORUSSO A., FISHER R. B.: Estimating 3-d rigid body transfor-
mations: a comparison of four major algorithms. Mach. Vision Appl. 9, 5-6 (Mar.
1997), 272–290.

[EM94] EDELSBRUNNER H., MÜCKE E. P.: Three-dimensional alpha shapes. ACM Trans.
Graph. 13, 1 (Jan. 1994), 43–72.

[EMSN12] ELSEBERG J., MAGNENAT S., SIEGWART R., NÜCHTER A.: Comparison on nearest-
neigbour-search strategies and implementations for efficient shape registration.
Journal of Software Engineering for Robotics (JOSER) 3, 1 (2012), 2–12.

[FC04] FOLKESSON J., CHRISTENSEN H. I.: Graphical slam - a self-correcting map. In
ICRA (2004), pp. 383–390.

[GJ§10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3. http://eigen.tuxfamily.org, 2010.

[GK02] GOPI M., KRISHNAN S.: A fast and efficient projection-based approach for
surface reconstruction. In Proceedings of the 15th Brazilian Symposium on Com-
puter Graphics and Image Processing (Washington, DC, USA, 2002), SIBGRAPI
’02, IEEE Computer Society, pp. 179–186.

[GKS§] GRISETTI G., KÜMMERLE R., STACHNISS C., FRESE U., HERTZBERG C.: Hierarchi-
cal optimization on manifolds for online 2d and 3d mapping.

[GKUP11] GSCHWANDTNER M., KWITT R., UHL A., PREE W.: BlenSor: Blender Sensor
Simulation Toolbox Advances in Visual Computing. vol. 6939 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2011, ch. 20,
pp. 199–208.

102

http://eigen.tuxfamily.org

Bibliography

[Gou71] GOURAUD H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20,
6 (June 1971), 623–629.

[GR03] GELFAND N., RUSINKIEWICZ S.: Geometrically stable sampling for the icp algo-
rithm. In Proc. International Conference on 3D Digital Imaging and Modeling
(2003), pp. 260–267.

[GSB] GRISETTI G., STACHNISS C., BURGARD W.: Non-linear constraint network opti-
mization for efficient map learning. IEEE Transactions on Intelligent Transporta-
tion Systems, 2009.

[GSGB07] GRISETTI G., STACHNISS C., GRZONKA S., BURGARD W.: A tree parameterization
for efficiently computing maximum likelihood maps using gradient descent. In
In Proc. of Robotics: Science and Systems (RSS (2007).

[HGCA12] HELD R., GUPTA A., CURLESS B., AGRAWALA M.: 3d puppetry: a kinect-based
interface for 3d animation. In Proceedings of the 25th annual ACM symposium
on User interface software and technology (New York, NY, USA, 2012), UIST ’12,
ACM, pp. 423–434.

[HHN88] HORN B. K. P., HILDEN H., NEGAHDARIPOUR S.: Closed-form solution of ab-
solute orientation using orthonormal matrices. JOURNAL OF THE OPTICAL
SOCIETY AMERICA 5, 7 (1988), 1127–1135.

[HKH§10] HENRY P., KRAININ M., HERBST E., REN X., FOX D.: Rgbd mapping: Using depth
cameras for dense 3d modeling of indoor environments. In In RGB-D: Advanced
Reasoning with Depth Cameras Workshop in conjunction with RSS (2010).

[Hor87] HORN B. K. P.: Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America A 4, 4 (1987), 629–642.

[HRD§12] HOLZER S., RUSU R. B., DIXON M., GEDIKLI S., NAVAB N.: Real-Time Surface
Normal Estimation from Organized Point Cloud Data Using Integral Images. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Vila Moura, Algarve, Portugal, October 2012).

[Ich12] ICHIM A.-E.: Toyota code sprint final report. http://svn.pointclouds.org/
tocsweb/source/aichim/files/tocs_final_ichim.pdf, 2012.

[IKH§11] IZADI S., KIM D., HILLIGES O., MOLYNEAUX D., NEWCOMBE R., KOHLI P., SHOT-
TON J., HODGES S., FREEMAN D., DAVISON A., FITZGIBBON A.: Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth camera. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology (New York, NY, USA, 2011), UIST ’11, ACM, pp. 559–568.

[JH98] JOHNSON A. E., HEBERT M.: Surface matching for object recognition in complex
3-d scenes. Image and Vision Computing 16 (1998), 635–651.

103

http://svn.pointclouds.org/tocsweb/source/aichim/files/tocs_final_ichim.pdf
http://svn.pointclouds.org/tocsweb/source/aichim/files/tocs_final_ichim.pdf

Bibliography

[JLW05] JIN S., LEWIS R. R., WEST D.: A comparison of algorithms for vertex normal
computation. The Visual Computer 21, 1-2 (2005), 71–82.

[Joh] JOHNSON A.: Clipper library. https://sourceforge.net/projects/polyclipping/.

[KAWB09] KLASING K., ALTHOFF D., WOLLHERR D., BUSS M.: Comparison of surface
normal estimation methods for range sensing applications. In Proceedings of the
2009 IEEE international conference on Robotics and Automation (Piscataway, NJ,
USA, 2009), ICRA’09, IEEE Press, pp. 1977–1982.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface reconstruction. In
Proceedings of the fourth Eurographics symposium on Geometry processing (Aire-
la-Ville, Switzerland, Switzerland, 2006), SGP ’06, Eurographics Association,
pp. 61–70.

[KGS§11] KÜMMERLE R., GRISETTI G., STRASDAT H., KONOLIGE K., BURGARD W.: g2o:
A general framework for graph optimization. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA) (Shanghai, China, May 2011).

[kin] Kinect for Windows. http://www.microsoft.com/en-us/kinectforwindows/.

[KJR§11] KAESS M., JOHANNSSON H., ROBERTS R., ILA V., LEONARD J., DELLAERT F.:
iSAM2: Incremental smoothing and mapping with fluid relinearization and
incremental variable reordering. In IEEE Intl. Conf. on Robotics and Automation,
ICRA (Shanghai, China, May 2011), pp. 3281–3288.

[KRD08] KAESS M., RANGANATHAN A., DELLAERT F.: iSAM: Incremental smoothing and
mapping. IEEE Trans. on Robotics (TRO) 24, 6 (Dec. 2008), 1365–1378.

[Lev98] LEVIN D.: The approximation power of moving least-squares. Math. Comput. 67,
224 (Oct. 1998), 1517–1531.

[Low04] LOW K.-L.: Linear least-squares optimization for point-to-plane icp surface
registration. In Technical Report TR04-004, Department of Computer Science,
University of North Carolina at Chapel Hill (2004).

[Max99] MAX N.: Weights for computing vertex normals from facet normals. journal of
graphics, gpu, and game tools 4, 2 (1999), 1–6.

[MFD§09] MAY S., FUCHS S., DROESCHEL D., HOLZ D., NÜCHTER A.: Robust 3d-mapping
with time-of-flight cameras. In Proceedings of the 2009 IEEE/RSJ international
conference on Intelligent robots and systems (Piscataway, NJ, USA, 2009), IROS’09,
IEEE Press, pp. 1673–1678.

[ML09] MUJA M., LOWE D. G.: Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision Theory
and Application VISSAPP’09) (2009), INSTICC Press, pp. 331–340.

104

https://sourceforge.net/projects/polyclipping/
http://www.microsoft.com/en-us/kinectforwindows/

Bibliography

[NH08] NÜCHTER A., HERTZBERG J.: Towards semantic maps for mobile robots. Robot.
Auton. Syst. 56, 11 (Nov. 2008), 915–926.

[NIL12] NGUYEN C. V., IZADI S., LOVELL D.: Modeling kinect sensor noise for improved
3d reconstruction and tracking. In 3D Imaging, Modeling, Processing, Visualiza-
tion and Transmission (3DIMPVT), 2012 Second International Conference on (oct.
2012), pp. 524 –530.

[PBV§10] PATHAK K., BIRK A., VASKEVICIUS N., PFINGSTHORN M., SCHWERTFEGER S.,
POPPINGA J.: Online three-dimensional slam by registration of large planar
surface segments and closed-form pose-graph relaxation. J. Field Robot. 27, 1
(Jan. 2010), 52–84.

[PD09] PARIS S., DURAND F.: A fast approximation of the bilateral filter using a signal
processing approach. Int. J. Comput. Vision 81, 1 (Jan. 2009), 24–52.

[PKDB10] PITZER B., KAMMEL S., DUHADWAY C., BECKER J.: Automatic reconstruction of
textured 3d models. In IEEE International Conference on Robotics and Automa-
tion, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010 (2010), IEEE, pp. 3486–
3493.

[PMC§11] POMERLEAU F., MAGNENAT S., COLAS F., LIU M., SIEGWART R.: Tracking a depth
camera: Parameter exploration for fast icp. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2011).

[Pri] PRIMESENSE: Primesense 3d sensors. http://www.primesense.com/wp-content/
uploads/2013/02/PrimeSense_3DsensorsWeb.pdf.

[Pul99] PULLI K.: Multiview registration for large data sets. In 3-D Digital Imaging and
Modeling, 1999. Proceedings. Second International Conference on (1999), pp. 160
–168.

[QCG§09] QUIGLEY M., CONLEY K., GERKEY B. P., FAUST J., FOOTE T., LEIBS J., WHEELER

R., NG A. Y.: Ros: an open-source robot operating system. In ICRA Workshop on
Open Source Software (2009).

[RBB09] RUSU R. B., BLODOW N., BEETZ M.: Fast point feature histograms (fpfh) for 3d
registration. In The IEEE International Conference on Robotics and Automation
(ICRA) (Kobe, Japan, 05/2009 2009).

[RBMB08] RUSU R. B., BLODOW N., MARTON Z. C., BEETZ M.: Aligning Point Cloud
Views using Persistent Feature Histograms. In Proceedings of the 21st IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Nice, France,
September 22-26 2008).

[RC11] RUSU R. B., COUSINS S.: 3D is here: Point Cloud Library (PCL). In IEEE Inter-
national Conference on Robotics and Automation (ICRA) (Shanghai, China, May
9-13 2011).

105

http://www.primesense.com/wp-content/uploads/2013/02/PrimeSense_3DsensorsWeb.pdf
http://www.primesense.com/wp-content/uploads/2013/02/PrimeSense_3DsensorsWeb.pdf

Bibliography

[RL01] RUSINKIEWICZ S., LEVOY M.: Efficient variants of the ICP algorithm. In Third
International Conference on 3D Digital Imaging and Modeling (3DIM) (June
2001).

[RMB§09] RUSU R., MARTON Z., BLODOW N., HOLZBACH A., BEETZ M.: Model-based and
learned semantic object labeling in 3d point cloud maps of kitchen environ-
ments. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on (oct. 2009), pp. 3601 –3608.

[Rus] RUSU R. B.: Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Computer Science department, Technische
Universität München, Germany.

[SB12] STÜCKLER J., BEHNKE S.: Integrating depth and color cues for dense multi-
resolution scene mapping using rgb-d cameras. In Proceedings of the IEEE
International Conference on Multisensor Fusion and Information Integration
(MFI) (2012).

[SC86] SMITH R. C., CHEESEMAN P.: On the representation and estimation of spatial
uncertainly. Int. J. Rob. Res. 5, 4 (Dec. 1986), 56–68.

[SEE§12] STURM J., ENGELHARD N., ENDRES F., BURGARD W., CREMERS D.: A benchmark
for the evaluation of rgb-d slam systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS) (Oct. 2012).

[SFG] STACHNISS C., FRESE U., GRISETTI G.: Openslam. https://openslam.informatik.
uni-freiburg.de.

[SML] SCHROEDER W., MARTIN K., LORENSEN B.: The Visualization Toolkit, Third
Edition. Kitware Inc.

[SRKB11] STEDER B., RUSU R. B., KONOLIGE K., BURGARD W.: Point feature extraction
on 3d range scans taking into account object boundaries. In International
Conference on Robotics and Automation (2011 2011).

[Tau12] TAUBIN G.: Smooth signed distance surface reconstruction and applications. In
CIARP (2012), Álvarez L., Mejail M., Gómez L., Jacobo J. C., (Eds.), vol. 7441 of
Lecture Notes in Computer Science, Springer, pp. 38–45.

[TM05] THRUN S., MONTEMERLO M.: The GraphSLAM algorithm with applications
to large-scale mapping of urban structures. International Journal on Robotics
Research 25, 5/6 (2005), 403–430.

[TRC12] TREVOR A. J. B., ROGERS III J. G., CHRISTENSEN H. I.: Planar surface slam with
3d and 2d sensors. In Intl. Conf. On Robotics and Automation (St. Paul, MN, May
2012), IEEE.

106

https://openslam.informatik.uni-freiburg.de
https://openslam.informatik.uni-freiburg.de

Bibliography

[TSDS10] TOMBARI F., SALTI S., DI STEFANO L.: Unique signatures of histograms for
local surface description. In Proceedings of the 11th European conference on
computer vision conference on Computer vision: Part III (Berlin, Heidelberg,
2010), ECCV’10, Springer-Verlag, pp. 356–369.

[Tuk77] TUKEY J. W.: Exploratory Data Analysis. Addison-Wesley, 1977.

[TW98] THÜRMER G., WÜTHRICH C. A.: Computing vertex normals from polygonal
facets. journal of graphics, gpu, and game tools 3, 1 (1998), 43–46.

[Vat92] VATTI B. R.: A generic solution to polygon clipping. Commun. ACM 35, 7 (July
1992), 56–63.

[WJK§12] WHELAN T., JOHANNSSON H., KAESS M., LEONARD J., MCDONALD J.: Robust
Tracking for Real-Time Dense RGB-D Mapping with Kintinuous. Tech. Rep. MIT-
CSAIL-TR-2012-031, Computer Science and Artificial Intelligence Laboratory,
MIT, Sep 2012.

[WSV91] WALKER M. W., SHAO L., VOLZ R. A.: Estimating 3-d location parameters using
dual number quaternions. CVGIP: Image Underst. 54, 3 (Oct. 1991), 358–367.

[WWLvG09] WEISE T., WISMER T., LEIBE B., VAN GOOL L.: In-hand scanning with online
loop closure. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th
International Conference on (27 2009-oct. 4 2009), pp. 1630 –1637.

107

	List of figures
	List of tables
	Introduction
	Introduction
	Depth-only Registration
	Similar Systems
	Pipeline Overview and Thesis Organization
	Datasets
	Open Source Software
	Contributions

	Point Cloud Registration
	Introduction and Related Work
	Point Cloud Pre-processing
	Filtering
	Sampling
	Normal Estimation

	Correspondence Estimation and Rejection
	Correspondence Estimation
	Correspondence Rejection

	Transformation Estimation and Pair Weighting
	Stopping Criteria and Transformation Validation
	Conclusion

	Graph optimization
	Introduction and Related Work
	Pose Graphs for Kinect Mapping
	Incremental Construction of the Pose Graph
	Loop Closures
	Edge Weights

	Optimizations
	Global ICP
	Conclusion

	Surface Reconstruction and Texture Mapping
	Introduction and Related Work
	Vertex Coloring
	UV Maps
	Color Transfer
	Perspectively Correct Texture Mapping
	Heuristics for Weighting the Per-texel Contributions

	Conclusion

	Geometric Features, Planes
	Introduction
	Plane Extraction
	Plane Tracking
	Planes as Landmarks in Graph Optimization
	Frame to Frame Alignment using Planes
	RANSAC and Rendered Depth Maps
	Joint Point and Plane Optimization
	Plane-Constrained ICP

	Conclusion

	Results, Benchmarks and Future Work
	TUM Datasets Benchmarks
	Our own datasets
	Future Work
	Conclusions

	Bibliography

