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Introduction - Why depth-only registration?

• auto-exposure is bad for RGB features
• want a system that is independent of the 
lighting conditions and repeatable at any time 
of day
• indoor environments have repetitive 
textures - bad for localization
• want a coherent depth-only registration 
pipeline that can only improve by adding RGB 
information



Similar Systems

1. Incremental
• Kinect Fusion
• Kintinuous

2. perform loop closure
• RGB-D Mapping variants
• various commercial systems

3. with manual intervention
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Datasets

TUM Datasets - with ground truth transformations

Our own

Room modeling, outside modeling, 
object modeling - various sizes

Blensor



Open Source Software





Experiments on combinations of algorithms 
for the steps of the ICP algorithm:

Baseline

• random sampling
• closest point correspondence
• filter correspondences based on normals
• constant weighting of point pairs
• point-to-plane error metric

Best

• random sampling
• projection-based pairing
• constant weighting of point pairs
• point-to-plane error metric

RUSINKIEWICZ S., LEVOY M.: Efficient variants of the 
ICP algorithm. In Third International Conference on 3D 
Digital Imaging and Modeling (3DIM) (June 2001).





Filtering 1/5

RGB-D 
camera noise

Noise
model



Median filter • simple image processing filter
• good for impulse noise
• fixed size window - take median

Filtering 2/5



Bilateral filter smooths the signal and preserves strong edges

Filtering 3/5

one image:

two images
(depth + RGB):

PARIS S., DURAND F.: A fast approximation of the bilateral filter using 
a signal processing approach. Int. J. Comput. Vision 81, 1 (Jan. 2009), 
24–52.

* fast implementation by interpreting the image as a 3D function
 the filter becomes a convolution in 3D



Filtering 4/5

Moving Least Squares

ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA C. T.: Com- puting and 
rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9 
(2003), 3–15.

• fit a plane locally with PCA
• fit a 2D function on the plane
• project the point onto the function

• Do not do it for all the point in the 
cloud, but for a voxel grid-ed version
• allows for up-sampling and uniform 
point distribution



Filtering 5/5





RUSINKIEWICZ S., LEVOY M.: Efficient variants of the ICP algorithm. In Third 
International Conference on 3D Digital Imaging and Modeling (3DIM) (June 2001). Sampling 1/7

• use all the points
• uniform sampling
• random sampling
• normal space sampling
• sample points on color edges

• covariance sampling

Rusinkiewicz et al. - best

new



Sampling 2/7

• use all the points
• uniform sampling
• random sampling

very similar results
advantage of random - force to choose different 

pairs at each iteration



• normal space sampling

place normals into m3 bins
randomly (uniform) select samples from each bin
=> uniformly cover the half-sphere of normals for each scan

Sampling 3/7



• covariance sampling

sample points so that the transformation is “locked” better
the sampled cloud needs to have all the eigenvalues of the 
covariance matrix equal

each point has a translational 
force and a rotation torque

the covariance matrix tells us about the 
stability of the registration

not full rank => transform is not unique

condition number !!!want a condition number close to 1
Sampling 4/7

iterative algorithm - sort points by contribution to 
each eigenvalue, and select the smallest to balance 
the eigenvalues



condition number !!!

single wall two walls
room corner

desk clutter boxes

2946 862.45
10.27

12.83 4.58
Sampling 5/7



uniform random normals covariance

Sampling 6/7



Sampling 7/7

Amount of subsampling

uniform sampling - 25% - 10% of the 
initial size => 75k-30k points

HENRY P., KRAININ M., HERBST E., REN X., FOX D.: Rgbd 
mapping: Using depth cameras for dense 3d modeling of indoor 
environments. In In RGB-D: Advanced Reasoning with Depth 
Cameras Workshop in conjunction with RSS (2010).

POMERLEAU F., MAGNENAT S., COLAS F., LIU M., 
SIEGWART R.: Tracking a depth camera: Parameter exploration 
for fast icp. In Proc. of the IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS) (2011).

complex sampling techniques are too slow 
compared to the performance improvement

uniformly subsample the depth grid to 6.25% 
of the initial size (19.2k points) and then 
random subsample to 1% (3.7k points)

The number of points is the factor that influences 
performance the most! Tuning the sampling rate is 

essential for real-time systems!





Normal Estimation 1/2

3D sensors create sample locations, and lose 
information about the surfaces

KLASING K., ALTHOFF D., WOLLHERR D., BUSS M.: Comparison of surface normal 
estimation methods for range sensing applications. In Proceedings of the 2009 IEEE 
international conference on Robotics and Automation (Piscataway, NJ, USA, 2009), 
ICRA’09, IEEE Press, pp. 1977–1982.

• averaging methods
• optimization-based methods

weighting:
• angles
• area
• centroid
• gravitational

• PlaneSVD 

• PlanePCA

fit a plane in the local 
neighborhood, minimize the error 
with SVD

minimize the variance of the points by 
computing a local coordinate system

superior Computation time: seconds



Normal Estimation 2/2

Normal Estimation using integral images

• smooth the data with a variable window size depending on the depth
• mask for depth changes
• compute the normals as cross products of grid neighbors - adaptive window

Authors claim better results than PlanePCA

Downside: cannot compute normals near 
the image borders

Computation time: ~50 ms





Correspondence Estimation

• projection-based

• search-based
• exhaustive

• kd-tree

Timing

bad when the 
transformation is large

Long init times O(N logN), 
but fast search times O(logN)

O(N)





Correspondence Rejection 1/5

• distance
• median distance
• one to one
• sample consensus
• sample consensus 2D
• surface normal
• boundary points

Options:



Correspondence Rejection 2/5

Benchmarks

ONE

TWO

THREE

FOUR

FIVE

SIX

no filtering
median distance rejection (threshold = 2x median)
median distance + surface normal (threshold of 30 degrees)
median distance + surface normal + reject 
correspondences that contain boundary points
median distance + surface normal + boundary points + 
one to one
median distance + surface normal + boundary points + one 
to one + sample consensus 
(1000 iterations with an inlier threshold of 5 cm)



Correspondence Rejection 3/5

Benchmarks

one source scan and 
three target scans:

• rotation of 1.3 degrees and 1 cm translation
• rotation of 4.3 degrees and 4.5 cm translation
• rotation of 8.3 degrees and 23 cm translation
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Transformation Estimation 1/3

• point to point:

• point to plane:

Methods:

• Point to plane Linear Least Squares
• Point to plane LLS weighted
• SVD
• Point to plane LM
• Point to plane LM weighted

Error metrics:



Transformation Estimation 2/3

Benchmarks

Same 3 pairs of clouds
3 types of correspondences:

• noisy
• clean (filtering based on normals)
• clean + randomization
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Transformation Estimation 3/3



Stopping Criteria
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Transformation Validation

• percentage of valid dexels
• percentage of inliers
• motion limit
• stability of the overlapping regions (condition number of the inliers)

Additional criteria for validating a transformation:





Graph Optimization
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Graph Optimization

Graph representation

By linearization:

and can be solved by Gauss-Newton 
or Levenberg-Marquardt

it reduces to:



Graph Optimization

Ideally: N(N-1) edges in the graph

N edges from incremental registration

need more, how?

keyfram
es

thresholding in angle, xyz and time space



Loop Closure



Graph Optimization 1/2

Edge Weights

• uniform weighting

• isotropic weighting based on the pairwise registration
• percentage of overlap between the frames
• condition number of the overlapping points

• true covariance matrix of ICP
• by perturbation

• covariance as the cloud stability (Gelfand et al.)
• ICP covariance in closed form (Censi et al.)



Graph Optimization 2/2

Split the graph when edges are not good enough culprit 
frames



Global ICP





Meshing and Texturing

Poisson meshing with hallucinations cleaned up



transfer color

Meshing and Texturing

Vertex coloring

bad with 
compressed 

meshes



Meshing and Texturing

UV Mapping

trivial per-triangle space-optimizing
trivial per-triangle

Maya automatic 
UV mapping



Meshing and Texturing

UV Mapping

Need the texture to preserve the 

triangle neighborhoods!

Color bleeding between triangles from 
different parts of the mesh



Meshing and Texturing

affine transformation perspective transformation



Meshing and Texturing

Weighting texel contributions:

• angle between the surface normal and the viewing 
direction of the camera
• distance of the 3D point on the mesh triangle to 
the camera center
• linear combination of the previous two
• pixel area of the mesh triangle in the camera image

no 
averaging

with 
averaging





Planes

Geometric Features

• PFH, SHOT, FPFH, NARF, spin images etc.
• semantic mapping concepts: 

• cylinders
• spheres
• planes

very fre
quent in 

indoor mapping



Planes

Plane Extraction

1. Region growing
seed points + use normal, curvature, 
Euclidean distance to grow planar regions

2. Based on RANSAC
RANSAC to find plane inliers
clustering
refine plane parameters and inliers iteratively using PCA
concave hull of the points
simplify the contour



Planes

Plane Tracking

1. frame to frame

2. frame to plane map

• project inliers from one 
image to the other
• threshold

• get candidates via equations
• project source plane contour into 
target plane
• compute intersection area
• threshold

Plane Fusion

• weighted average of the 
plane parameters
• project source plane 
contour to target plane
• compute union of the 
contour polygons
• simplify the polygon 



Planes

Planes as landmarks in the graph

Observation edge - camera node to plane node

Manhattan edge - plane node to plane node

Before After



Planes

Frame to frame alignment using planes

1. RANSAC and rendered depth maps

1. choose first & second pairs at random
2. check if the angle difference between the normals of the first pair is 
close to that of the second pair - if not, goto 1.
3. choose third pair at random
4. check if all the angles are consistent
5. compute the transformation T using the 3 plane pairs
6. render the source planes transformed by T
7. compute the number of inliers between the rendered source and 
target maps
8. if inliers > max, store the current transformation



Planes

failgood



Planes

Frame to frame alignment using planes

2. Joint Point and Plane Optimization

3. Plane-Constrained ICP
reduce the dimensionality of the 
solution space from 6D to 3D



Results - SLAM



Results - SLAM



Results - SLAM



Results - SLAM



Results - SLAM



Results - SLAM



no planes

with planes

Results - SLAM



Results - Modeling



Results - Modeling



Results - Modeling


